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Abstract—The exponential growth of biomedical data requires
large storage databases and computing resources. Most of the
bioinformatics tools as image analysis, data mining, protein
folding, and gene sequencing require high computing resources.
However, the need for computing capacity varies in different
stages of computation. In this paper we present a new Microarray
Data Analysis Tool which requires both computing and storage
resources. As an appropriate solution we propose a design that
can be deployed in a Cloud and offered as SaaS.
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Cloud Computing

I. INTRODUCTION

Scientific computing involves the construction of mathe-

matical models and numerical solution techniques to solve

scientific and engineering problems that often require a huge

number of computing resources to perform large scale exper-

iments or to cut down the computational complexity into a

reasonable time frame [1]. The image analysis, data mining,

protein folding, and gene sequencing are important tools for

biomedical researchers and examples of high compute and

resource intensive scientific applications [2]. When compar-

ing the DNA sequencing throughput to the computer speed,

sequencing is winning at a rate of about 5-fold per year [3],

while computer performance generally follows the Moore’s

Law, doubling only every 18 or 24 months [4]. The exponential

growth of biomedical data requires large storage databases

and computing resources. However, the need for computing

capacity in the biomedical applications varies dramatically

for different stages, i.e. sometimes very big computing power

with huge storage space is needed, whereas in the following

stage these computationally expensive applications may not

require as much computing power as in the previous steps [5].

Considering the fact that the computing resources do not need

to be continuously maintained at the maximum capacity, and

that DNA sequencing is getting cheaper more quickly than

data storage or computation, an appropriate solution for the

genome informatics might be to migrate to the cloud [3].

Cloud computing is a model for enabling convenient, on-

demand network access to a shared pool of configurable com-

puting resources (e.g., networks, servers, storage, applications,

and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction [6].

In a cloud computing environment, the applications, data and

software no longer exist on the client side, instead they are

treated as abstract services and reside in the cloud [7]. Cloud’s

service can be grouped into three categories: software as a

service (SaaS), platform as a service (PaaS), and infrastructure

as a service (IaaS). SaaS refers to providing on demand

applications over the Internet [8].

In this paper we propose a new tool for microarray data

analysis developed according to cloud’s principles and de-

ployed as SaaS. Considering the permanent growth of microar-

ray experiments and the examination of thousand of genes,

an application that can be approached immediately using

only a web browser, avoiding the installation of a specific

software and complex hardware requirements, would be a

great advantage for the scientists.

The rest of the paper is organized as follows. In Section

II we present some of the work related to our problem. The

whole idea, the tool’s design, architecture and implementation

are presented in Section III. In the final Section IV we present

our conclusions and ideas for future work.

II. RELATED WORK

In this section we present some of the latest work related

to our problem.

The idea for this kind of application arises from our previous

researches where we explored different kind of microarray

technologies. In [9] we developed original statistical method-

ology for Illumina based experiments, suitable for Bayesian

classification. Even though, both Illumina and Affymetrix are

widely used microarray technologies, in [10] we showed that

both platforms require different statistical approach. Therefore,

in [11] we upgraded the methods and proposed new methodol-

ogy for the Affymetrix based data, also applicable for Bayesian

classification analysis. Hereupon, in this paper we organize

the developed methodologies for both the Illumina and the

Affymetrix platforms, and present an architecture for a novel

microarray data analysis tool (MDAT) that uses the advantages

of the cloud computing’s paradigm.

The authors in [12] motivated by the need to discover

cancer-associated eQTLs (expression levels regulators of mR-

NAs) through integration of two high-dimensional genomic

data types (gene expression and genotype), that require more

than 13 billion distinct statistical computations, demonstrated

that cloud computing is a viable and economical technology
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that enables large scale data integration and analysis for studies

in genomic medicine. In [13] authors present their experience

in applying two new Microsoft technologies Dryad and Azure

to three bioinformatics applications, and comparison with

traditional MPI and Apache Hadoop implementation. Inter-

estingly, authors in [14] present a new desktop application for

push-button automated sequence analysis which supports the

use of remote cloud computing resources to improve perfor-

mance for large-scale sequence processing. Another research

is presented in [15] where the experiments performed, using

the Amazon Elastic Compute Cloud (EC2) infrastructure,

have demonstrated that by using distributed implementation

of a classification system it is possible to obtain a suitable

computing cloud platform for high-dimensional classification

problems.

III. ARCHITECTURE, DESIGN AND IMPLEMENTATION

In this section we describe the MDAT’s architecture, design

and its implementation.

A. MDAT’s Architecture

When developing an appropriate architecture, we take into

account few characteristics necessary for the software to

follow the SaaS model. In [16] there is a clear distinction

between an ordinary web application and SaaS solution. In

order MDAT to be successful SaaS, it must be able to

accommodate different users of the application while making it

appear to each that they have the application all to themselves,

i.e., it must support multi-tenancy. Furthermore, MDAT needs

to have the ability to scale up as the number of users grow

and need to support a level of basic customization for each

tenant. Since MDAT is a scientific tool, it is exposed to

various workloads. Handling various amount of input and still

maintaining sustainable performance, requires an appropriate

design and cloud infrastructure.

Figure 1 presents the users-providers interaction. SaaS

provider delivers software services online and allows remote

access to the MDAT through the Internet. Thus, MDAT’s

users are not concerned of any technical details. All the

infrastructural resources SaaS providers rent from the IaaS

Fig. 1. Users and providers

Fig. 2. MDAT Architecture

providers according to the pay-per-use pricing model. IaaS

providers offer a pool of computing resources that can be

dynamically assigned to multiple resource consumers and can

easily expand its service to large scales in order to handle

rapid increase in service demands [8], and thus preserve the

performance.

When presenting the MDAT’s architecture in Figure 2, we

chose to use Amazon Elastic Computing Cloud (EC2), since

it is the largest commercial computing cloud in production

among all commercial cloud computing services that can

be used for scientific computing. The service is elastic in

the sense that it enables the user, which in this case is the

software provider, to extend its infrastructure by launching

or terminating new virtual machine instances [17]. Once the

software provider chooses its configuration, it hosts the MDAT

application on an application server, and the users can access it

simply using only a web browser. As depicted in Figure 2, IaaS

provider takes care of the load by introducing a load balancer,

and allows resource’s auto-scale if necessary. Therefore, the

performance will stay preserved and there will not be any

underutilized resources.

B. MDAT’s Design

Once we defined the MDAT architecture, we proceed to

explain its design details.

In Section II we gave a brief review of our previous work

related to two widely used platforms for microarray analysis,

Illumina and Affymetrix. Both platforms analyse thousands

of genes for the purpose of discovering the reasons for some

disease occurrence. We used these DNA chips to investigate

the genes behaviour when the patients are diagnosed with col-

orectal cancer. Using data from both Illumina and Affymetrix

retrieved from the Gene Expression Omnibus database [18]

we realized that both require different statistical approach and

for each platform we developed different statistical method-

ology which can be used for unveiling the genes that show

significant expression in presence of colorectal cancer, i.e.,

the biomarkers. Furthermore, under the assumption that the

biomarkers are able to distinguish cancerous from healthy

patient, we developed generative model for assigning each

biomarker different probability distribution. Once we modelled
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the prior distributions for both the cancer and the healthy

classes, we followed Bayesian posterior probability approach

for classifying new patients and obtained very accurate results.

Thus the methodology can be separated in two different

stages, the first one is the process for unveiling the biomarkers,

and the second is the classification process itself.

The process for uncovering the biomarkers consists of

the following steps, mainly the same for both Illumina and

Affymetrix platforms:

• Normalization. Our aim is to unveil the difference in gene

expression levels between the carcinogenic and healthy

tissues. We assume that only a small set of genes are

differently expressed compared to the biomarker genes,

i.e., most of the genes are not correlated to the colorectal

cancer. In such cases Quantile normalization (QN) is

a suitable normalization method, because it makes the

distribution of the gene expressions as similar as possible

among each other across all samples [19].

• Filtering methods. Since some genes may not be well

distributed over their range of expression values, i.e.

low expression values can be seen in all samples except

one [20]. In order to remove the genes with almost

ordered expression levels, we used an entropy filter which

measures the amount of information (disorder) about the

variable.

• Paired-sample t-test. Knowing the facts that both the

carcinogenic and healthy tissues are taken from the same

patients, and that the whole-genome gene expression

follows normal distribution [21], we used a paired-sample

t-test. Assuming that the most of the genes do not have

different expressions, the null hypothesis states that there

is no statistical difference between the carcinogenic and

the healthy samples. The rejection of the null hypothesis

depends on the significance level which we determine.

We considered the genes as statistically significant for a

p-value less than 0.01, which means that the chances of

wrong rejection of the null hypothesis is less than 1 in

100.

• False Discovery Rate. False Discovery Rate (FDR) is a

reduction method that usually follows the t-test. FDR

solves the problem of false positives, i.e., the genes which

are considered statistically significant when in reality

there is not any difference in their expression levels. For a

threshold of 0.01 we expect 10 genes to be false positive

in a set of 1000 positive genes. The significance in terms

of FDR is measured as a q-value. It is described as a

proportion of significant genes that turn out to be false

positives [22].

• Volcano Plot. Both the t-test and the FDR method identify

different expressions in accordance with statistical signif-

icance values, and do not consider biological significance.

The biological significance is measured as a fold change

[23] which describes how much the expression level

changed starting from the initial value. Fold change is

measured as ratio between the two expression intensities

and does not take into account the variance of the

expression levels. In order to display both statistically

and biologically significant genes we used the volcano

plot visual tool.

The process for preparing the biomarkers for Bayesian

classification significantly differs in few steps. Hereupon, we

explain the process for each platform distinctively.

Modelling the a priori distribution for Illumina data:

• Cross-validation method. In order to choose the patients

from which the classifier will learn, we used the cross-

validation method. This method avoids over-fitting by not

allowing the overlap between the training and the testing

set [24].

• Hypothesis testing. Once we chose the training set, we

used the Kolmogorov-Smirnov test for equality in distri-

bution of the carcinogenic and the healthy tissues. After

the tissues rejected the null hypothesis of having the

same distribution, we tested each gene distinctively over

the Lognormal, Gamma, and Extreme Value probability

distribution.

Modelling the a priori distribution for Affymetrix data:

• Round-up threshold method. When observing gene ex-

pression values, we noticed that a large percentage of

the gene expression values are negative. The authors in

[25] explain this phenomena within a few processing

steps. One way to remove these genes is to transform

all gene expression values below some threshold cut-off

value to that threshold value [26]. This method is known

as Round-up threshold method.

• Appropriate tissue selection. Instead of using the cross-

validation method for determining the training and the

testing set as we did for the Illumina data, for Affymetrix

data we choose the training set according to the distri-

bution skewness factor. If the skewness factors are with

opposite signs, then these tissues are involved into the

training process.

• Hypothesis testing. At first, the two sets of tissues are con-

firmed to be differently distributed using the Kolmogorov-

Smirnov test. Hereupon, we performed statistical tests

over the Normal, Lognormal, Gamma, and Extreme Value

probability distributions. As we have obtained the prob-

abilities from the testing for each gene distinctively, we

chose the distribution whose probability is highest and

we assign it to the particular gene.

After we modelled the biomarkers’ probability distributions,

we used them to calculate the Bayesian posterior probability

and make accurate diagnostics for the patients’ health condi-

tion.

MDAT uses the methodology we previously defined. Fig-

ure 3 depicts the whole process of microarray data analysis. At

first, the user needs to retrieve microarray data from one of the

many biological databases that store microarray experiments.

Therefore, the user has to upload the data for further analysis

and make a choice between the Affymetrix and the Illumina

platform. Once the choice is been made, the format of the data

has to be verified according to the chosen platform. Hereupon,
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the user has an option to unveil cancer biomarkers, or, if the

biomarkers are already known, the user can proceed directly

to the classification process. Unveiling the biomarkers follows

the platform independent procedure specified previously in

this section. After the biomarkers are discovered, the user

can use them for classification, or, can end the procedure

immediately. If one decides to continue to the classification

process, choosing an appropriate platform is necessary again

because of the different classification methodology for each

of them. Once the Bayesian classification produces outcomes,

a new document is created for the results, and the process

finishes.

C. MDAT’s Implementation

In this section we give an explanation of the MDAT’s

implementation.

In order to solve computationally and data-intensive prob-

lems using multi-core processors, MATLAB developed Paral-

lel Computing Toolbox which consists of parallel for-loops,

special array types, and parallelized numerical algorithms.

This toolbox allows the developers to parallelize MATLAB

applications without MPI programming. Moreover, once the

application is programmed on a multi-core desktop computer,

without changing the code, it can be run in the cloud using

MATLAB Distributed Computing Server as depicted in Fig-

ure 4.

However, previously we claimed that our tool can be used

without installing any software or hardware. Therefore, in

order the end user to run MDAT independently of MATLAB,

the application needs to be compiled using the MATLAB

compiler runtime (MCR). The MCR is a standalone set

of shared libraries that enables the execution of compiled

MATLAB applications or components on computers that do

not have MATLAB installed. The compiler produces files

which are used by the MATLAB Builder NE which encrypts

the MATLAB programs and then generates .NET or COM

wrappers around them so that they can be accessed just like

native .NET and COM components [27].

Once the MDAT is compiled with MCR and connected to

the .NET interface using the MATLAB Builder NE, it can

be deployed in the cloud, and all users can use it without

installing MATLAB on their local machines.

IV. CONCLUSION AND FUTURE WORK

Considering our previous researches, we concluded that

different microarray platforms require different statistical anal-

ysis. Therefore, we developed two different methodologies

for analysis and classification of Affymetrix and Illumina

based experiments. In this paper we propose a new tool for

microarray data analysis which implements the two distinctive

procedures. Since the Microarray Data Analysis Tool (MDAT)

requires large storage databases and computing resources, we

propose an application architecture that can be deployed in a

Cloud and offered as SaaS. Therefore, the application can be

approached by the user using only a web browser, avoiding

Fig. 3. MDAT Design
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Fig. 4. MDAT Implementation

the installation of a specific software and complex hardware

requirements.

In our future work we will develop the tool we proposed,

and we will perform tests if it satisfies the expectations from

the cloud implementation.
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