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ABSTRACT

In this paper we give a matrix presentation of quasigroups

of order 4 and their parastrophes. For that purpose we use

the presentation of quasigroups as vector valued Boolean

functions. According to matrix presentations, the classes of

linear, semi-linear and quadratic quasigroups of order 4 are

defined. The results obtained will open possibilities for future

constructons of new cryptographic primitives.

I. INTRODUCTION

Quasigroups are simple algebraic structures whose prop-

erties and especially their large number enable them to be

applicable in many areas, including cryptography, coding the-

ory, telecommunications etc. In applications, the quaisgroups

of order 2n and their parastrophe operations are of special

interest. The quasigroups of order 2n can be represented as

vector valued Boolean functions f : {0, 1}
2n
→ {0, 1}

n
[1].

According to the degree of the polynomials in the Boolean

presentations, the quasigroups of order 4 can be classified as

linear, semi-linear and quadratic quasigroups. In this paper

we use some algebraic properties of matrices and matrix

operations to derive and characterize the matrix form of the

quasigroups of order 4 and their left parastrophes.

The paper is organized as follows. Section II outlines the

notion of Boolean presentation of quasigroups of order 2n.

Then, using this notion, in Section III we introduce a matrix

presentation of the classes of linear, semi-linear and quadratic

quasigroups of order 4. Thereby, we generalize the matrix

presentation of the quasigroups of order 4 and use it to derive

a matrix presentation of their left parastrophes. We give some

conclusions and directions for future work in Section IV.

II. BOOLEAN PRESENTATION OF QUASIGROUPS

Below we give a brief overview of quasigroups; a more

detailed explanation can be found in [3].

A quasigroup (Q, ∗) is a groupoid satysfying the law

(∀u, v ∈ Q) (∃!x, y ∈ Q) (x ∗ u = v ∧ u ∗ y = v) ,

i.e., the equations x ∗ u = v and u ∗ y = v have unique

solutions x, y for each u, v ∈ Q. If (Q, ∗) is a quasigroup,

then ∗ is called a quasigroup operation.

Given a quasigroup (Q, ∗), new operations on the set Q,

called parastrophes (or conjugate operations), can be adjoint

to the quasigroup operation ∗. The parastrophe operation left

division \ (known as left parastrophe) of a quasigroup (Q, ∗)
is defined by

x \ z = y ⇐⇒ x ∗ y = z .

Then (Q, \) is a quasigroup too, and the identities

x \ (x ∗ y) = y, x ∗ (x \ z) = z

hold true as well. (These identities are used in defining encryp-

tion and decryption functions for cryptographic purposes.)

Let (Q, ∗) be a quasigroup of order 2n. Then the elements

of Q can be represented in a one-to-one way by n-tuples of

bits (x1, x2, . . . , xn), xi ∈ {0, 1}. If for a, b, c ∈ Q we have

a ∗ b = c, then for the corresponding bit representations of

a, b, c we have that

(a1, a2, . . . , an) ∗ (b1, b2, . . . , bn) = (c1, c2, . . . , cn),

where ci = ci(a1, a2, . . . , an, b1, b2, . . . , bn) : {0, 1}2n →
{0, 1} are Boolean functions on 2n variables. Since the

quasigroup operation ∗ is uniquely determined by the Boolean

functions ci, we say that the n-tuple < c1, c2, . . . , cn > of

Boolean functions is a Boolean presentation of the quasigroup

(Q, ∗).
Note that every Boolean function f(x1, . . . , xk) can be

uniquely given in its algebraic normal form (ANF), i.e., as

a polynomial in the Galois field GF (2) as follows:

f(x1, . . . , xk) =
∑

I∈{0,1}k

αIx
I ,

where αI ∈ {0, 1} and xI = xixj . . . xt when I ∈ {0, 1}k

has 1 in the positions i, j, . . . , t. A Boolean function is said

to be of degree d if its ANF is of degree d.

Given a Boolean presentation < c1, c2, . . . , cn > of a

quasigroup (Q, ∗), for any fixed bits α1, α2, . . . , αn we have

that < c1+α1, c2+α2, . . . , cn+αn > is a Boolean presentation

of a quasigroup, too. Let (Q, ∗̃) denote a quasigroup of order

2n with Boolean presentation < c1, c2, . . . , cn > such that the

free coefficient of each ci is equal to 0. Then we say that

(Q, ∗̃) is in a standard form.

Theorem 1: To each quasigroup < c1, c2, . . . , cn > of order

2n in standard form, 2n − 1 different quasigroups < c1 +
α1, c2 + α2, . . . , cn + αn > of order 2n can be associated.

The next Theorem was proven in [2].
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Theorem 2: Each quasigroup of order 4 has a Boolean

presentation < f, g > with Boolean functions f, g of degree 2:

f(a, b, c, d) = α0 + αaa+ αbb+ αcc+ αdd

+ αacac+ αadad+ αbcbc+ αbdbd,

g(a, b, c, d) = β0 + βaa+ βbb+ βcc+ βdd

+βacac+ βadad+ βbcbc+ βbdbd ,

(1)

where αi, βi ∈ {0, 1} for each index i.

In what follows we consider only quasigroups of order 4
with Boolean presentations < f, g > and we represent the el-

ements of those quasigroups by pairs (x, y) of bits. According

to the degree of the polynomials f, g, the quasigroups of order

4 are divided into three classes as follows:

1) Linear quasigroups. Both f and g are linear polynomi-

als.

2) Semi-linear quasigroups. One of the functions f or g is

linear and the other is quadratic.

3) Quadratic quasigroups. Both f and g are quadratic

polynomials.

III. MATRIX PRESENTATION OF THE QUASIGROUPS OF

ORDER 4

Using the standard form of the Boolean presentation of

quasigroups of order 4, given by (1), we derive the matrix

form of the different classes of standard quasigroups of order

4. That suffices because, by Theorem 1, 3 other different

quasigroups of order 4 can be associated to each standard one,

characterizing the full range of quasigroups of order 4.

Theorem 3: Each standard linear quasigroup of order 4 is

of the form

(a, b) ∗̃ (c, d) = (αaa+ αbb+ αcc+ αdd,

βaa+ βbb+ βcc+ βdd)
(2)

for any x = (a, b) ,y = (c, d) ∈ {0, 1}
2
, and has a matrix

presentation

x ∗̃ y ≡ A · xT +B · yT , (3)

where A =

[
αa αb

βa βb

]
and B =

[
αc αd

βc βd

]
are nonsingular

2-dimensional Boolean matrices.

Proof: ⇒ : Let (Q, ∗̃) be a standard linear quasigroup of

order 4 whose quasigroup operation ∗̃ : Q2 → Q is defined

by (2) over the elements of Q = {0, 1}2. Suppose x ∗̃ y = z.

This can be written in an equivalent matrix form as

AxT +ByT = zT .

Given y, z ∈ Q, we get

AxT = zT −ByT ,

which represents the matrix form of a linear system with

unknown vector x. This system has a unique solution x,

given y, z, which follows from the unique solution x of the

quasigroup equation x ∗̃ y = z. Consequently, the Boolean

matrix A is nonsingular. It can be shown in an analog way

that the Bolean matrix B must be nonsingular as well.

⇐ : Conversely, assume that (Q, ∗̃) is a groupoid whose

operation ∗̃ : Q2 → Q is defined by (3) where the Boolean

matrices A and B are nonsingular, and x,y ∈ Q. Then, for

given arbitrary x, z ∈ Q we have the linear system

ByT = zT −AxT

with unknown vector y. Since B is nonsingular, the system

has a unique solution y. Hence, there is a unique solution y

of the equation x ∗̃ y = z, given x and z. In the same way,

given y and z, the equation x ∗̃ y = z has a unique solution

x. So, ∗̃ is a quasigroup operation on Q.

Corolary 1: The number of all linear quasigroups of order

4 is 144.

Proof: There are 6 nonsingular Boolean 2 × 2-matrices,

hence the matrix presentation (3) yields 6 · 6 standard linear

quasigroups of order 4. By Theorem 1, 3 other linear quasi-

groups can be associated to each standard one, so the number

of all linear quasigroups of order 4 is 6 · 6 · 4 = 144.

The class of semi-linear quasigroups of order 4 has Boolean

presentation < f, g >, where one of the functions f or g is

linear, and the other one is quadratic. It is characterized by

the following theorem.

Theorem 4: Assume that f is a quadratic polynomial and

g is a linear polynomial. Then each standard semi-linear

quasigroup of order 4 with Boolean presentation < f, g >

is of the form

(a, b) ∗̃ (c, d) = (αaa+ αbb+ αcc+ αdd

+ (βaa+ βbb) (βcc+ βdd) ,

βaa+ βbb+ βcc+ βdd)

(4)

for any x = (a, b) ,y = (c, d) ∈ {0, 1}
2
, and has a matrix

presentation

x ∗̃y ≡A · xT +B · yT +
(
CA · xT

)
◦
(
CB · yT

)
, (5)

where A =

[
αa αb

βa βb

]
and B =

[
αc αd

βc βd

]
are nonsingular

2-dimensional Boolean matrices, C =

[
0 1
0 0

]
, and ◦ denotes

the component-wise multiplication of vectors.

For the case when g is a quadratic polynomial and f is a

linear polynomial, the choice for the matrix C is C =

[
0 0
1 0

]
.

Proof: ⇒ : Let (Q, ∗̃) be a standard semi-linear quasi-

group of order 4 whose quasigroup operation ∗̃ is defined by

(4) over the elements of Q = {0, 1}
2
. Assume (a, b) ∗̃ (c, d) =

(u, v). This can be written equivalently as
[
αa + (βcc+ βdd)βa αb + (βcc+ βdd)βb

βa βb

] [
a

b

]

+

[
αc αd

βc βd

] [
c

d

]
=

[
u

v

]
.
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Given (c, d) , (u, v) ∈ Q, we get the following system
[
αa + (βcc+ βdd)βa αb + (βcc+ βdd)βb

βa βb

] [
a

b

]

=

[
u− αcc− αdd

v − βcc− βdd

]
.

This system has a unique solution (a, b) for any c, d, u, v,

which follows from the unique solution (a, b) of the quasi-

group equation (a, b) ∗̃ (c, d) = (u, v), given (c, d) , (u, v).

Hence, A′ =

[
αa + (βcc+ βdd)βa αb + (βcc+ βdd)βb

βa βb

]

is nonsingular, i.e. det (A′) = 1. Since

det(A′) =

∣∣∣∣
αa + (βcc+ βdd)βa αb + (βcc+ βdd)βb

βa βb

∣∣∣∣

=

∣∣∣∣
αa αb

βa βb

∣∣∣∣+
∣∣∣∣
(βcc+ βdd)βa (βcc+ βdd)βb

βa βb

∣∣∣∣
= det (A) + 0 = det (A) ,

it follows that det (A) = 1. Therefore, the Boolean matrix A

is nonsingular. Analogly, B must be nonsingular as well.

⇐ : Conversely, assume that (Q, ∗̃) is a groupoid whose

function ∗̃ : Q2 → Q is defined by (4), and the Boolean

matrices A =

[
αa αb

βa βb

]
and B =

[
αc αd

βc βd

]
are nonsingular.

The nonsingularity of the Boolean matrix B implies that B

cannot have a zero row, that is, (βc, βd) 6= (0, 0). This means

that βcc+βdd cannot be always 0. Hence, there are 2 possible

cases to consider regarding the value of βcc+ βdd:

Case 1. βcc+ βdd = 1 for some (c, d) ∈ Q. This yields

(αaa+ αbb+ αcc+ αdd+ βaa+ βbb,

βaa+ βbb+ βcc+ βdd) = (u, v) ,

or, in matrix form
[
αa + βa αb + βb

βa βb

] [
a

b

]
+

[
αc αd

βc βc

] [
c

d

]
=

[
u

v

]
.

Then for a given (u, v) ∈ Q,
[
αa + βa αb + βb

βa βb

] [
a

b

]
=

[
u− αcc− αdd

v − βcc− βdd

]
(6)

represents the matrix form of a system of 2 linear equations

with 2 variables a, b and parameters c, d, u, v. Its coefficient

matrix A′ =

[
αa + βa αb + βb

βa βb

]
has a determinant

det (A′) =

∣∣∣∣
αa + βa αb + βb

βa βb

∣∣∣∣ =
∣∣∣∣
αa αb

βa βb

∣∣∣∣+
∣∣∣∣
βa βb

βa βb

∣∣∣∣
= det (A) + 0 = det (A) .

Since A′ is nonsingular, det(A) = 1, and therefore det(A′) =
1, i.e. A′ is nonsingular as well. This means that the system

(6) has a unique solution (a, b) for any given c, d, u, v. Hence,

there is a unique solution (a, b) of the equation (a, b) ∗̃ (c, d) =
(u, v), given (c, d) , (u, v). Similarly, given (a, b) , (u, v), there

is a unique solution (c, d) of the equation (a, b) ∗̃ (c, d) =
(u, v). So, ∗̃ is a quasigroup operation on Q.

Case 2. βcc+ βdd = 0 for some (c, d) ∈ Q. Then we have

(αaa+ αbb+ αcc+ αdd, βaa+ βbb+ βcc+ βdd) = (u, v) .

Given (u, v) ∈ Q, we get the following system

[
αa αb

βa βb

] [
a

b

]
=

[
u− αcc− αdd

v − βcc− βdd

]
,

whose coefficient matrix A =

[
αa αb

βa βb

]
is nonsingular.

Therefore, the system has a unique solution (a, b), given

c, d, u, v. This means that, for given (c, d) , (u, v), the equation

(a, b) ∗̃ (c, d) = (u, v) has a unique solution (a, b). In the same

way, (a, b) ∗̃ (c, d) = (u, v) has a unique solution (c, d), given

(a, b) , (u, v). Hence, (Q, ∗̃) represents a quasigroup.

Corolary 2: The number of all semi-linear quasigroups of

order 4 is 288.

Proof: Using the matrix presentation (5), there are 6

nonsingular Boolean 2 × 2-matrices and two choices for the

matrix C depending on which of the Boolean functions f, g

is a quadratic and which one is a linear polynomial, yielding

6 · 6 · 2 standard semi-linear quasigroups of order 4. By

Theorem 1, 3 other semi-linear quasigroups of order 4 can

be associated to each standard one, leading to 6 ·6 ·2 ·4 = 288
as the number of all semi-linear quasigroups of order 4.

The class of quadratic quasigroups of order 4 is character-

ized by the following theorem.

Theorem 5: Each standard quadratic quasigroup of order 4

given by its Boolean presentation < f, g > is of the form

(a, b) ∗̃ (c, d) =

(αaa+ αbb+ αcc+ αdd+ ((αa + βa) a

+(αb + βb) b) ((αc + βc) c+ (αd + βd) d) ,

βaa+ βbb+ βcc+ βdd+ ((αa + βa) a

+(αb + βb) b) ((αc + βc) c+ (αd + βd) d))

(7)

for any x = (a, b) ,y = (c, d) ∈ {0, 1}
2
, and has a matrix

presentation

x ∗̃ y ≡ A · xT +B · yT +
(
CA · xT

)
◦
(
CB · yT

)
, (8)

where A =

[
αa αb

βa βb

]
and B =

[
αc αd

βc βd

]
are nonsingular

2-dimensional Boolean matrices, C =

[
1 1
1 1

]
, and ◦ denotes

the component-wise multiplication of vectors.

Proof: ⇒ : Let (Q, ∗̃) be a standard quadratic quasigroup

of order 4 and its quasigroup operation ∗̃ is defined by (7).

Assume (a, b) ∗̃ (c, d) = (u, v). Then, both polynomials f

and g in its Boolean presentation must be quadratic. This

implies that αc 6= βc and αd 6= βd, because otherwise

(αc + βc) c + (αd + βd) d would be always 0 and f and g

would be linear polynomials, yielding a contradiction. Hence,

there are 2 possible cases to consider:
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Case 1. (αc + βc) c+(αd + βd) d = 1 for some (c, d) ∈ Q.

This yields

(αaa+ αbb+ αcc+ αdd+ (αa + βa) a+ (αb + βb) b,

βaa+ βbb+ βcc+ βdd+ (αa + βa) a+ (αb + βb) b)

= (u, v) ,

or, in a matrix form,
[
αa + (αa + βa) αb + (αb + βb)
βa + (αa + βa) βb + (αb + βb)

] [
a

b

]

+

[
αc αd

βc βd

] [
c

d

]
=

[
u

v

]
,

which is equivalent to
[
βa βb

αa αb

] [
a

b

]
+

[
αc αd

βc βd

] [
c

d

]
=

[
u

v

]
.

Given (u, v) ∈ Q we get the following system
[
βa βb

αa αb

] [
a

b

]
=

[
u− αcc− αdd

v − βcc− βdd

]
. (9)

This system has a unique solution (a, b) for any given c, d, u, v,

which follows from the uniqueness of the solution (a, b) of

the quasigroup equation (a, b) ∗̃ (c, d) = (u, v), for given

(c, d) , (u, v). So, the cooeficient matrix A′ =

[
βa βb

αa αb

]
of

the system (9) is nonsingular and det (A′) = 1. Since

det (A′) =

∣∣∣∣
βa βb

αa αb

∣∣∣∣ = −
∣∣∣∣
αa αb

βa βb

∣∣∣∣ = − det (A) ,

it follows that det (A) = 1, i.e. the Boolean matrix A is

nonsingular. Similarly, B must be nonsingular as well.

Case 2. (αc + βc) c+(αd + βd) d = 0 for some (c, d) ∈ Q.

Then, for a given (u, v) ∈ Q, we get the following system
[
αa αb

βa βb

] [
a

b

]
=

[
u− αcc− αdd

v − βdd− βdd

]
,

which has a unique solution (a, b) implied by the unique so-

lution (a, b) of the quasigroup equation (a, b) ∗̃ (c, d) = (u, v)
for given (c, d) , (u, v). Consequently, the Boolean matrix

A =

[
αa αb

βa βb

]
is nonsingular. The nonsingularity of the

matrix B can be shown in an analog way.

⇐ : Conversely, let (Q, ∗̃) be a groupoid whose function

∗̃ : Q2 → Q is defined over the elements of Q = {0, 1}
2

by (7)

and the Boolean matrices A =

[
αa αb

βa βb

]
and B =

[
αc αd

βc βd

]

are nonsingular. The nonsingularity of B implies αc 6= βc or

βc 6= βd. Otherwise, if αc = βc and αd = βd, then det(B)
would be 0, leading to a contradiction. This means that αc+βc

and αd+βd cannot both equal 0, so (αc + βc) c+(αd + βd) d
cannot be always 0. Hence, we can again consider 2 cases:

Case 1. (αc + βc) c+(αd + βd) d = 1 for some (c, d) ∈ Q.

Similarly as before, for a given (u, v) ∈ Q, this is equivalent

to the following system with unknown vector (a, b):
[
βa βb

αa αb

] [
a

b

]
=

[
u− αcc− αdd

v − βcc− βdd

]
.

Its coefficient matrix A′ =

[
βa βb

αa αb

]
has a determinant

det (A′) = − det (A). Hence, since A is a nonsingular

Boolean matrix and det (A) = 1, it follows that det (A′) = 1
and A′ is nonsingular, too. This means that the above system

has a unique solution a, b for given c, d, u, v. Then, the

quasigroup equation (a, b) ∗̃ (c, d) = (u, v) has a unique

solution (a, b) for given (c, d) , (u, v). In the same way,

(a, b) ∗̃ (c, d) = (u, v) has a unique solution (c, d) for given

(a, b) , (u, v). So, ∗̃ defines a quasigroup operation on Q.

Case 2. (αc + βc) c+(αd + βd) d = 0 for some (c, d) ∈ Q.

Then, for a given (u, v) ∈ Q, we get the system
[
αa αb

βa βb

] [
a

b

]
=

[
u− αcc− αdd

v − βcc− βdd

]

whose coefficient matrix A =

[
αa αb

βa βb

]
is nonsingular.

Hence, this system has a unique solution (a, b), given c, d, u, v.

Consequently, the quasigroup equation (a, b) ∗̃ (c, d) = (u, v)
has a unique solution (a, b) for given (c, d) , (u, v) ∈ Q, and

similarly, a unique solution (c, d) for given (a, b) , (u, v) ∈ Q.

Therefore, ∗̃ defines a quasigroup operation on Q.

Corolary 3: The number of all quadratic quasigroups of

order 4 is 144.

Proof: There are 6 nonsingular Boolean 2 × 2-matrices,

and therefore, using the matrix presentation (8), the number

of standard quadratic quasigroups of order 4 is 6 · 6. By

Theorem 1, 3 other different quadratic quasigroups of order

4 can be associated to each standard one, yielding in total

6 · 6 · 4 = 144 quadratic quasigroups of order 4.

Theorems 3-5 characterize the matrix form of the classes

of linear, semi-linear and quadratic quasigroups of order 4.

These characterizations can be embedded together into the

following theorem which represents a generalization of the

matrix presentation of quasigroups of order 4.

Theorem 6: Each quasigroup (Q, ∗) of order 4 has a matrix

presentation of form

x∗y ≡ mT +A ·xT +B ·yT +(CA ·xT )◦ (CB ·yT ), (10)

where x,y ∈ Q, m is some constant from Q, A and B are

nonsingular 2-dimensional matrices of bits, C is one of the

matrices

[
0 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
1 1
1 1

]
, and ◦ denotes

the component-wise multiplication of vectors.

Theorem 6 implies that by taking 2 arbitrary nonsingular 2-

dimensional Boolean matrices A,B and an appropriate choice

for the matrix C, an appropriate quasigroup of order 4 can be

generated. Hereby, if C =

[
0 0
0 0

]
, then a linear quasigroup

of order 4 is obtained. Whereas, if the choice for the matrix C

is C =

[
0 1
0 0

]
or C =

[
0 0
1 0

]
, the obtained quasigroup of

order 4 is semi-linear. Finally, if C =

[
1 1
1 1

]
, then a quadratic

quasigroup of order 4 is obtained.
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Using the matrix presentation (10) of a quasigroup (Q, ∗) of

order 4, we can derive the matrix form of the left parastrophe

\ of the quasigroup (Q, ∗). For that purpose, we will first show

the following lemma.

Lemma 1: Let (Q, ∗) be a standard quasigroup of order 4,

given by its matrix presentation (10). If A = B = I, then the

parastrophe \∗ of ∗ is defined by

x \∗ z ≡ (I+C)xT + zT +CxT ◦CzT , (11)

where I denotes the identity matrix.

Proof: Since (Q, ∗) is a standard quasigroup, m = 0.

Furthermore, A = B = I, so the quasigroup operation ∗ is

given by the matrix presentation

x ∗ y ≡ xT + yT +CxT ◦CyT .

Note that for any x ∈ Q, x + x = 0, CC = O, and CxT ◦
CxT = CxT , where O is the zero matrix. Also, for any

x,y ∈ Q there is an a such that CxT ◦ CyT = CaT .

Now, let x ∗ y = z. Then we have

x \∗ z ≡ (I+C)xT + zT +CxT ◦ CzT

= (I+C)xT + (xT + yT +CxT ◦CyT )

+CxT ◦C(xT + yT +CxT ◦CyT )

= IxT +CxT + xT + yT +CxT ◦CyT

+CxT ◦CxT +CxT ◦CyT +CxT ◦C(CaT )

= (xT + xT ) + (CxT ◦CxT ) + yT

+ (CxT ◦CyT ) +CxT ◦ 0

= yT ,

i.e. x \∗ z = y.

The following theorem gives the matrix presentation of the

left parastrophes of quasigroups of order 4.

Theorem 7: The parastrophe operation \ of the quasigroup

operation ∗ given by (10) has a matrix presentation of form

x \ z = B−1mT +B−1(I+C)AxT

+B−1(CmT ◦CAxT )

+B−1zT +B−1(CAxT ◦CzT ),

(12)

where I denotes the identity matrix.

Proof: Let (Q, ∗) be a quasigroup of order 4, defined by

(10), and let us define a new quasigroup operation • on Q,

given by

x • y ≡ xT + yT +CxT ◦ CyT .

Then, by Lemma 1, the parastrophe \• of • is defined by (11).

Assume x ∗ y = z. Then, we have that

z = x ∗ y ≡mT +AxT +ByT +CAxT ◦CByT

= mT +AxT •ByT ,

i.e. mT +AxT •ByT = zT , and therefore, we get

ByT = AxT \• (m
T + zT )

= (I+C)AxT + (mT + zT ) +CAxT ◦C(zT +mT ).

This implies

x \ z ≡ yT

= B−1(I+C)AxT +B−1(mT + zT )

+B−1(CAxT ◦C(mT + zT ))

= B−1(I+C)AxT +B−1mT +B−1zT

+B−1(CAxT ◦CmT ) +B−1(CAxT ◦CzT )

= B−1mT +B−1(I+C)AxT +B−1(CmT ◦CAxT )

+B−1zT +B−1(CAxT ◦ CzT ),

which concludes the proof of the theorem.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, by using the presentations of quasigroups

of order 4 as vector valued Boolean functions, we could

present them in matrix form as well. Matrix presentations of

the classes of linear, semi-linear and quadratic quasigroups

of order 4 were derived. The generalization of the matrix

presentation of quasigroups of order 4 was explored to derive

also a matrix presentation for the corresponding quasigroup

parastrophes. The results obtained are the needed prerequisites

for continuing our efforts to give matrix presentations of

quasigroups of order 2n, as well as the matrix presentations of

their parastrophes. In such a way their applications for building

cryptographic primitives will be opened.
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