
222 Proceedings of the Second International Conference on Informatics and Information Technology 

 

CASE BASED REASONING – A SHORT OVERVIEW 

Z. Budimac, V. Kurbalija 

Institute of Mathematics and Computer Science, Faculty of Science,  
University of Novi Sad 

Trg D. Obradovića 4, 21000 Novi Sad, Yugoslavia 
{zjb, kurba}@im.ns.ac.yu 

 

Abstract: Case based reasoning is a relatively new approach in intelligent search 
of (large) databases. Every new search is based on previous (similar) cases, thus 
including an experience in the search-engine. This approach gained much atten-
tion in e-business applications and search over the Internet. The paper presents 
basics of case based reasoning systems, while the talk concentrates on realistic 
examples.  

Keywords: artificial intelligence, case-based reasoning systems 

1. Introduction 
Generally speaking, case-based reasoning is applied for solving new problems by 
adapting solutions that worked for similar problems in the past.  
In this section, some formal or informal definitions of the basic concepts will be 
given. Definitions are taken from (Lenz, 1998). 

1.1  Knowledge 
Knowledge can be understood as an informal notion describing something that a 
human, a formal system or a machine can possibly use in order to perform a cer-
tain task (to solve a problem). In order to use knowledge some entities need to 
have an access to it and to know how to apply it in solving problems. 
The way the knowledge is expressed is the type of knowledge representation, 
which consists of certain data structures and some additional operators that allow 
changes on the data structure. The most common data structure in case-based 
reasoning is the attribute-value representation. Every attribute is given by: 

• a name A 
• a usually finite set DOM(A) called the domain of the attribute A 
• a variable xA 



2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 223 

 

For a finite set Ai, 1 <= i <= n, of attributes an attribute-value vector is an n-tuple 
(a1, ... ,an) such that ai ∈ DOM(Ai). However, if one wants to deal with incom-
plete knowledge (which is occurring frequently in case-based reasoning), he 
must allow that some variables exist without values (value unknown). 

1.2  Basic Concepts 
Case-based reasoning is a problem solving technology. The basic scenario for 
case-based reasoning, from the simplified point of view, looks as follows: In or-
der to find a solution of an actual problem one looks for a similar problem in an 
experience base, takes the solution from the past and uses it as a starting point to 
find a solution to the actual problem. 
A general desire in every knowledge-based system is to make use of the past ex-
perience. An experience may be concerned with what was true or false, correct or 
incorrect, more or less useful. It can be represented by a rule, constraint, some 
general law or advice or simply by saving a past event. From all of this the main 
idea of the case can be obtained. The case is some recorded situation where the 
problem was totally or partially solved. In its simplest form, the case is repre-
sented as an ordered pair  
 (problem, solution) 
The existence of the case means that the corresponding episode happened in the 
past. This episode contains some decisions that a decision maker found useful. 
However, somebody else may not be happy with such a case and neglect it. From 
this follows that cases must be selected carefully, so different categories of cases 
can exist: good, typical, important, misleading or unnecessary.  
A case base is a set of cases, which is usually equipped with some additional 
structure. A structured case base is usually called a case memory. 
In many practical applications, one deals with problems with incomplete infor-
mation. Both, the problem and the solution part in the case may be incompletely 
described. In these situations we talk about incomplete cases. The case comple-
tion is another task that can be solved by using case-based reasoning technology. 
The next very important concept in the case-based reasoning is similarity. While 
in classical databases information can be retrieved by using only exact matches, 
in the case-based reasoning cases can be retrieved by using even inexact 
matches. The notion of similarity is equivalent to a dual mathematical concept - 
distance. 
In the functional way similarity can be defined as a function sim: U × CB → [0 , 
1] where U refers to the universe of all objects, while CB refers to the case base 
(just those objects which were examined in the past and saved in the case mem-
ory). The higher value of the similarity function means that these objects are 



224 Proceedings of the Second International Conference on Informatics and Information Technology 

 

more similar. The boundary case is sim(x, x) = 1, which means that each object is 
the most similar to itself. 
Retrieval is a basic operation in databases and therefore in the case base too. A 
query to a database retrieves some information by an exact match by using a key, 
while a query to a case-based reasoning system presents a problem and returns a 
solution by using inexact matches with the problems from the cases in the case 
base. As in databases, trees play a major role in efficient retrieval. Some exam-
ples of retrieval structures are: kd-trees (k-dimensional trees), case retrieval nets, 
discrimination nets etc. 
The simplest way to use retrieved case is simply to take the unchanged solution 
of that case as the solution to the actual problem. However, in many applications 
even small differences between the actual and the case problem may require sig-
nificant modifications to the solution. Making the appropriate changes to the case 
solution is called a case adaptation. A general demand is that the solution of a 
similar problem should be easily adapted to a solution of an actual problem. 
The knowledge container is the structural element, which contains some quantity 
of knowledge. The idea of the knowledge container is totally different from the 
traditional module concept in programming. While the module is responsible for 
a certain subtask, the knowledge container does not complete the subtask but 
contains some knowledge relevant to many tasks. Even small tasks require the 
participation of each container. The concept of the knowledge container is simi-
lar to concepts of the nodes and propagation rules in neural networks. 
In case-based reasoning we identify the following knowledge containers: a) the 
vocabulary used; b) the similarity measure; c) the case base; and d) the solution 
transformation. In principle, each container can carry almost all knowledge 
available. From a software engineering point of view there is another advantage 
of case-based reasoning - the content of the containers can be changed locally. 
This means that manipulations on one container have little consequences on the 
other ones. As a consequence, maintenance operations (Iglezakis 2001), (Rein-
artz 2000) are easier to be performed then on classical knowledge based systems. 
The task of machine learning is to improve a certain performance using some 
experience or instructions. In inductive learning, problems and good solutions are 
presented to the system. The major desire is to improve a general solution 
method in every inductive step. Machine learning methods can be used in order 
to improve the knowledge containers of a case-based reasoning system (the case 
base, similarity measures and the solution transformation). However, one of the 
greatest advantages of the case-based reasoning system is that it can learn even 
through the work with users modifying some knowledge containers. 



2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 225 

 

The case based reasoning system has not only to provide solutions to problems 
but also to take care of other tasks occurring when it is used in practice. The main 
phases of the case-based reasoning activities are described in the CBR-cycle of 
(Aamodt and Plaza, 1994) in Fig. 1. 

 

Figure 1: CBR-cycle of Aamodt and Plaza (1994) 

In the retrieve phase the most similar case (or k most similar cases), to the prob-
lem case, is retrieved, while in the reuse phase some modifications to the re-
trieved case is done in order to provide better solution to the problem (case adap-
tation). As the case-based reasoning only suggests solutions, there may be a need 
for a correctness proof or an external validation. That is the task of the phase re-
vise. In the retain phase the knowledge, learned from this problem, is integrated 
in the system by modifying some knowledge containers. 

2. Extending some Foundations of Case-Based Reasoning 
The case-based reasoning was developed in the context and in the neighborhood 
of problem solving methods, learning methods (Machine Learning, Statistics, 
Neural Networks) and retrieval methods (Data Bases, Information Retrieval). It 



226 Proceedings of the Second International Conference on Informatics and Information Technology 

 

has inherited the concepts of "problem" and "solution" and a notion of "similar-
ity" based on the distance. 
The basic concepts of the case-based reasoning can be extended in the following 
way: 

• we will use acceptance instead of similarity, because acceptance includes 
similarity but also other approaches related to "expected usefulness", 
"reminds on" etc. 

• we will use the term case completion instead of solution (including solu-
tions of problems but also a proposal of intermediate problem solving 
steps). 

• we will consider cases as sets of information entities instead of vectors 
(whereby this approach includes vectors as well as textual documents). 

2.1  Case completion 
Case-based reasoning is considered as a problem solving method; given a prob-
lem we have to find the solution. This leads to a view where cases are split into 
the problem and the solution part. Given a new problem we search for related 
problems in the case memory and adapt their solution for the new problem. 
However, problem solving usually does not start with a complete problem de-
scription, which makes the identification of a final solution more difficult. 
Nevertheless, the new case is often talked of as a given entity when only the first 
impression of the underlying task is given. Instead of this, we want to keep atten-
tion to the fact that the whole process of completing the task up to the final solu-
tion. The consequence is that the resulting case usually depends on a number of 
decisions. These decisions are initially open; they depend on future human deci-
sions. Depending on different possible decisions, we can end up with different 
cases. 
Most practical tasks are performed as processes with a lot of intermediate steps. 
Each of these steps could be considered as a single new problem-solving step. 
The question arises, as to whether we need different sets of cases to support each 
of these steps. This would mean splitting the whole story of the process into dif-
ferent cases for a later usage by the case-based reasoning. Case completion is an 
attempt to avoid such approach. A case should be a description of the whole per-
formance of the task with all steps, and it should be useful for later tasks at in-
termediate situations, too. The main consequence of the case completion is that 
we do not actually need any distinction between the problem and the solution 
part in the case. 



2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 227 

 

2.2  Information Entities 
Information entities are the atomic constituents of cases and queries. We consider 
a case as the result of the case completion process. Each step of that process adds 
some information entities. The current situation during the elaboration of a task is 
described by the information entities known at the time point. The final case, as it 
later may appear in the case memory, is a completed set of information entities. 
The collected information entities result from the real world (an outcome of the 
test, a decision in an intermediate design step, etc). They are not a direct result of 
the case-based reasoning process - case-based reasoning is used to propose the 
next step (some test, the next design decision etc). 
The number of information entities in a case may be variable. It is up to a human 
decision at which time point the task is finished. 
The information entities, which are later used for retrieval, (which appear in the 
case memory) may be only a subset of the information entities collected during 
the case completion. These information entities (in the case memory) serve as the 
indexes for retrieval. The case memory consists of cases, which are sets of such 
information entities. These cases may then point to related complete descriptions 
in a collection of "full cases". 
The information entity is an atomic part of a case or query. E denotes the set of 
all information entities in a given domain. 

• A case is a set of information entities: c ⊆ E. 
• The set of cases (in the case memory) is denoted by C, C ⊆ P(E). 
• A query is a set of information entities: q ⊆ E. 

In many applications, the information entities are simply attribute-value pairs. 
Some examples of information entities are: <price, 1000>, <price, 324>, 
<color, blue>, <mass, 54 kg>. We say that the first two information entities are 
comparable (because they have the same attribute) while the other information 
entities are not comparable. This causes a structuring of the set E into disjoint 
sets EA, where EA contains all attribute-value pairs from E for a certain attribute 
A. If cases and queries are considered as attribute-value vectors over a finite set 
of attributes A1,…,An, then each case or query may contain at most one informa-
tion entity from each EAi.  

2.3  Acceptance 
We want to use the association of information entities for reminding cases with 
the expectation that these cases are useful for a given query. Usefulness of a case 
in the case completion process depends on real world circumstances that are not 
completely known at the retrieval time. This means that usefulness is only an a 



228 Proceedings of the Second International Conference on Informatics and Information Technology 

 

posteriori criterion. The retrieval from the case memory will be based on match-
ing of certain information entities. Usefulness of former cases is not restricted to 
those cases that are similar to a given query for all information entities. Cases 
may contain information entities that have no counterpart in the query. It is also 
possible that some information entities of the query are not present in the useful 
case. 
Some special desirable properties of acceptance are following: 
P1: A case might be acceptable for a query even if there exist some information 
entities that are not comparable. 
P2: A case might be unacceptable for a query if there exist an unacceptable in-
formation entity (a fix budget may forbid expensive offers). 
P3: The same information entity may have different importance for different 
cases (information entity <sex, male> has different importance in pregnancy test-
ing and in testing for influenza). 
P4: The same information entity may have different importance for different 
queries according to the user's intentions (material have different priorities in de-
sign queries). 
P5: Information entities may not be independent of each other. 
In order to provide better understanding of acceptance we will define the prefer-
ence relation (≥q), over the set of all potential cases, in the following way: 
 c' ≥q c'' if case c' is preferable to case c'' in regard to the query q. 
The definitions of acceptance functions will be given for cases and queries repre-
sented as feature vectors (and not as a set of information entities) because it is a 
more convenient form of representation. Both the queries and the cases are con-
sidered as feature vectors (a1, … ,an), where ai specifies the value for the i-th at-
tribute Ai. Formally, there is no difference between case vectors c = (c1, … ,cn) 
and query vectors q = (q1, … ,qn). 
 
Definition 1. (Global Acceptance Function): Let U := dom(A1) × … × dom(An) 
denote the set of all queries and cases. The acceptance of a case for a query is 
expressed by a global acceptance function 
 acc : U × U → R       ( 1 ) 
such that a higher value acc(q,c) denotes a higher acceptance of the case c for the 
query q. The preference relation ≥q ⊆ U × U induced by a query q ∈ U is defined 
by 
 c' ≥q c'' iff acc(q,c') ≥ acc(q,c'').     ( 2 ) 
 



2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 229 

 

Definition 2. (Local Acceptance Functions for Attributes): A local acceptance 
function σi for the attribute Ai is defined over the domain dom(Ai): 
 σi : dom(Ai) × dom(Ai) → R      ( 3 ) 
such that higher value σi(qi,ci) denotes a higher acceptance of the value ci (of a 
case c) for the value qi (of a query q). 
 
Global acceptance function can be obtained from local acceptance functions by a 
related composition function as follows: 
 
Definition 3. (Composite Acceptance Function): A global acceptance function 
acc is called composite if it is composed by a composite function Φ : R × …× R 
→ R from related local acceptance functions σi: 
 acc((q1,…,q n),(c1,…,cn)) = Φ(σ1(q1,c1),…,σn(qn,cn)).   ( 4 ) 
The natural demand is that composition functions must be monotonously increas-
ing. 
An example for the composition of local acceptance values is given by a 
weighted sum with only positive weights gi (because of monotonously increasing 
composition function): 
 acc((q1,…,qn),(c1,…,cn)) = ∑ gi⋅ σi(qi,ci)    ( 5 ) 
Addition is widely used for the combination of local values. It has an intuitive 
interpretation concerning acceptance in the sense of "collecting arguments" in 
favor of something. Positive arguments have positive values, while negative ar-
guments are expressed by negative values. The value 0 does not change the re-
sult, so unimportant or unknown attributes can be treated with value 0. There-
fore, properties P1 and P2 are satisfied. However, a more general combination is 
necessary to satisfy properties P3, P4 and P5. 
For illustration, we consider two simple local acceptance functions over the real 
numbers, which are composed by addition (weighted sum whose weights are all 
equal to 1). In Fig. 2. we consider the local acceptance function σi(qi,ci) = 1 / 
(1+|qi - ci|), while in Fig. 3. we consider the function σi(qi,ci) = 1-|qi - ci|. 



230 Proceedings of the Second International Conference on Informatics and Information Technology 

 

 

f(x) = 1/(1+|x|) 

 

1/(1+|q1-c1|) + 1/(1+|q2-c2|) = a 

Figure 2: The local acceptance function σi(qi,ci) = 1 / (1+|qi - ci|) 

 

f(x) = 1 - |x| 

 

(1-|q1-c1|) + (1-|q2-c2|) = a 

Figure 3: The local acceptance function σi(qi,ci) = 1-|qi - ci| 

The left sides of these pictures present the graphic of the function f(x) = σi(0,x), 
which shows the values of the local acceptance function for the fixed query (q = 
0). The right parts of these pictures show some characteristics of the resulting 
global acceptance functions in the two-dimensional universe. All points c = 
(c1,c2) on a characteristic have the same acceptance a for a fixed query q = 
(q1,q2). 
In Fig. 2, we have closed characteristics for large values a, but the characteristics 
are opened for lower values a (these curves actually never meet each other). The 
reason is that a high local acceptance value of a single attribute is sufficient to 
reach desired global acceptance value independently of other attributes (the local 



2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 231 

 

acceptance values are always positive, so the global acceptance is never re-
duced). 
The situation changes if unlimited negative local acceptance values are allowed 
as in the Fig. 3. On this picture all curves are closed. This situation is applied 
when we have to accumulate even "rejection" and not just "acceptance". 

2.4  The general case 
In this section we will generalize the previous concepts in order to satisfy the 
properties P1, … ,P5. 
Queries have been defined as sets of information entities. A weighted query is the 
generalization of this concept. 
Definition 4. (Weighted query): The weighted query assigns an importance 
value to each information entity by a function: 
 αq : E → R,        ( 6 ) 
where αq(e) denotes the importance of the information entity e for the query q. 
High values indicate a high importance; negative values indicate the rejection of 
related cases. The value 0 is used as a neutral element (αq(e) = 0, means that in-
formation entity e is unimportant to the query q). Of course, values for αq(e) can 
be taken from the set {0,1}, meaning that "e is (un)important for the q". 
By using σ we can compute the acceptance of the information entity e' from the 
case for a single information entity e of a query. However, a query may contain 
several information entities e such that σ(e,e') is defined for the single informa-
tion entity e'. The question is: how these values can be combined to a single 
value for e' which express the resulting acceptance value of e' for that query. 
Definition 5. (Local Accumulation Function): Let Ee = {e1, …,en} denote the 
set of all information entities to which the information entity e is comparable 
concerning acceptance (Ee = {e' | σ(e',e) is defined}). The local accumulation 
function πe for e is a function: 
 πe : R× … × R → R       ( 7 ) 
 n times          
such that πe(a1, …,an) denotes the accumulated acceptance in e. The values ai de-
note the contributions of the information entities ei ∈ Ee according to their occur-
rence in the query q and their local acceptance computed by σ(ei,e). 
The contributions are computed by a function: 
 f : R × R → R        ( 8 ) 
 such that ai = f(αq(ei),σ(ei,e)). 



232 Proceedings of the Second International Conference on Informatics and Information Technology 

 

We consider the retrieval of the cases as a process of reminding. Reminding may 
be of different strength; cases are in competition for retrieval according to the 
query. The cases receiving more reminders of more strength are the winners. The 
strength (importance, relevance) of reminding for an information entity e ∈ c is 
given by a relevance function: 
Definition 6. (Relevance Function): The relevance between information entities 
and cases is described by a relevance function: 
 ρ : E × C → R.        ( 9 ) 
The relevance ρ(e,c) is considered as a measure for the relevance of information 
entity e for the retrieval of a case c. ρ(e,c) is defined if and only if e ∈ c. 
 
Negative values ρ(e,c) may be used in the meaning "do not retrieve the case c if 
one asks for the information entity e". 
The acceptance of a case c for the query q is accumulated from the contributions 
of the information entities e ∈ c according to their relevancies ρ(e,c). The contri-
butions pe of the information entities are computed by their accumulation func-
tions πe as described in the definition 5. The accumulation in the cases is evalu-
ated by Global accumulation function. 
Definition 7. (Global Accumulation Function): The global accumulation func-
tion πc has the form: 
 πc : R × … × R → R,      (10 ) 
 k times          
for c = {e1, …,ek}. The accumulated acceptance of the case c regarding its consti-
tuting information entities is then computed by πc(p1, …,pk), where pi is the con-
tribution of the information entity ei ∈ c. This contribution pi depends on ρ(ei,c) 
and another real value xi assigned to ei (xi is the accumulated local acceptance 
value computed by πei(a1,…,an) from definition 5.). The contributions pi are com-
puted by a function: 
 g : R × R → R,       ( 11)  
 such that pi = g(xi,ρ(ei,c)). 
The global acceptance function, which satisfies properties P1,…,P5, is calculated 
in the following way: 
Definition 8. (Extended Acceptance Function): Acceptance between weighted 
queries and cases is expressed by an extended acceptance function: 
 acc : RE × P(E) → R.      ( 12) 



2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 233 

 

The acceptance acc(αq,c) of a case c for a weighted query αq can now be accu-
mulated by using the introduced functions: 
 acc(αq ,c) = 

πc (g (πe'1 (f (αq (e1,1), σ(e1,1,e'1)),…,f (αq (e1,n1), σ(e1,n1,e'1)), ρ(e1',c)), 
 . . . 
 g (πe'k (f (αq (ek,1), σ(ek,1,e'k)),…,f (αq (ek,nk), σ(ek,nk,e'k)), ρ(ek',c)) ) 
 where c={e'1,…,e'k} and Ee'i = {ei,1,… ei,ni} for i = 1,…,k. ( 13 ) 
If, for example, we consider f and g as products and πc and πe as sums then we 
get: 

  (14 ) 
 
Here, the properties P1,…,P4 are satisfied, but for satisfaction of the property P5, 
the appropriate selection of the functions f , g, πc and πe is needed. 

3. Conclusion 
Case-based reasoning is a relatively new and promising area of artificial intelli-
gence. Case-based reasoning is a reasoning method that facilitates knowledge 
management in which knowledge is a case base acquired by a learning process. 
Case-based reasoning can be used for solving problems in many practical do-
mains such as: mechanical engineering, medicine, business administration etc. 
Furthermore, for each domain, various task types can be implemented. Some of 
them are: classification, diagnosis, configuration, planning, decision support etc. 

4. References 

1. Aamodt, A., Plaza, E., (1994), “Case-Based Reasoning: Foundational Issues, 
Methodological Variations and System Approaches”, AI Commutations, pp. 
39-58. 

2. Iglezakis, I. (2001), “The Conflict Graph for Maintaining Case-Based Rea-
soning Systems”, 4th International Conference on Case-Based Reasoning 
(ICCBR 2001), pp. 263-276, Vancouver, Canada, July/August 2001.  

3. Lenz, M., Brtsch-Sporl, B., Burkhard, H., Wess, S. (1998), Case-Based Rea-
soning Technology: From Foundation to Applications, Springer, 1998. 

4. Reinartz, T., Iglezakis, I., Roth-Bergofer, T., (2000), “On Quality Measures 
for Case Base Maintenance”, 5th European Workshop (EWCBR 2000), pp. 
247-260, Trento, Italy, September 2000.  

∑ ∑
∈ ∈

⋅=
ce Ee

qq
e

eeececacc
' '

)()',(),'(),( ασρα


