
234 Proceedings of the Second International Conference on Informatics and Information Technology

ABOUT DISTRIBUTED AND MOBILE OBJECTS AND COMPONENTS
IN JAVA

M. Ivanović, N. Ibrajter

Faculty of Natural Sciences, University of Novi Sad
Trg Dositeja Obradovića 4., 21000 Novi Sad, Yugoslavia

{mira, natasha}@im.ns.ac.yu

Abstract: This paper is a short overview of basis of distributed programming, as
well as mobile and component-base programming in Java. The most popular
commercial tools are examined and evaluated.

Keywords: distributed systems, ORB, mobile agents, component-based pro-
gramming, CORBA, Caffeine, Voyager, RMI, COM/DCOM, Java.

1. Introduction
Object-oriented programming is based on modeling problems with objects,
meaningful elements of a problem. As objects contain meaning, it is not hard to
imagine how convenient it would be to move an object with desired meaning
(behavior) from one application to another, or just to remotely invoke desired
method of the object. But, one object can invoke some other object only if both
of them are part of the same local address space and are referred to by some local
reference or pointer.
Distributed object computing is technology that enables objects from different
programs to access each other. Traditional communication between different
software applications requires sending sets of row data back and forth.
An object is called mobile if it is enabled to move between two or more applica-
tions. Both the state and the code are transferred.
Writing source code is tiresome and error-prone process, but it was basis of soft-
ware development. It would be much easier to have small bundles of program-
ming functionality that can be easily incorporated into program with simple drag-
and-drop operation. These instant parts of source code are called components
[1]. Components integration framework defines the API (Application Program-
ming Interface) for allowing components developed by independent developers
to work together in the same program without additional overhead for the user of
the components.

2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 235

2. Distributed Objects
When two different applications communicate, they actually send sets of raw
data back and forth between two computers. These sets of data are called pack-
ets. The application that requests a certain service is called client, and the one
that provides the service is called server.
The client must be able to convert its request for service into packets, and send it
to server. The packets contain the identifying information about the object in the
server, which is the target, the information about the specific method of the ob-
ject that is used, and it must send all the parameters for the method. Software de-
veloper must be able to convert all the types into raw data. This process is called
externalization. The server side, receiving requests from client must interpret all
the received data in order to invoke the right method of the right object with the
right parameters. It is developer’s responsibility to write a code that will do the
externalization, as well as the reverse process on the server side.
In order to make application communication easier, ORB (Object Request Bro-
ker) was developed. It is a tool that enables objects to communicate on a com-
puter network (that is way they are called brokers) by sending requests and get-
ting answers on those requests.

2.1 What does it take to make object communicate with ORB?
The first step in making object communication is to create interface for that ob-
ject. Interface defines which methods the object offers for remote invocation. It is
a sort of promise that objects really knows to perform all the actions listed in the
interface. This interface is used by ORB to enable interaction between objects
written in different programming languages. Interface is written in IDL (Inter-
face Definition Language) and stored in separate file. The ORB uses information
in the interface to determine which packets the object can and cannot receive. As
the ORB completely automates the interaction of objects and encapsulates all the
details about networking software and hardware, the developer doesn’t need to
mess with streams and packets.
With ORB, it is possible to write object-oriented software that employs a mixture
of local and remote objects. The remote objects appear identical to the local ones,
and this property is called a location transparency.

3. CORBA – Common Object Request Broker
CORBA is a common standard which enables ORBs from different vendors to
interoperate [5]. CORBA provides a standard IDL syntax. Any language can
work with this IDL by providing a mapping between its own and the CORBA
IDL constructs. CORBA introduced a standard API (Application Programming

236 Proceedings of the Second International Conference on Informatics and Information Technology

Interface) for the most of the functions of an ORB: initializing ORB, invoking
methods on remote objects, mapping data types between programming lan-
guages.

3.1 How CORBA works?
When, for instance, client requests service from a server, it seems to it that
method is invoked on a local object. But, it is not so: in object-oriented pro-
gramming only local objects can be target of object invocation. A new object,
which takes place of a distributed object in local address space of the client, (Fig.
1.) is created. It is called stub and it supports all the methods specified in the dis-
tributed object IDL file. Stub provides the illusion that that the remote object can
be invoked in the local address space.
 request

 reply to request

Figure 1: CORBA distributed object’s communication

Stub is automatically generated by distributed object toolkit, by compiling the
IDL file. The client’s invocations of remote object methods are accepted by the
stub and forwarded to the remote object. CORBA loosely standardizes what each
of ORBs should put in the stub and what APIs should be offered to the CORBA
developer for manipulating the stubs. In this way, stubs generated with one
CORBA product are loosely compatible with other CORBA products. On the
server side exists the code, skeleton, which accepts requests from the network
and invokes the appropriate methods. Skeleton accepts raw data from the net-
work connection, turns it back in method invocation, and actually invokes the
method. Skeletons are automatically generated.
The way to register an object that can be remotely accessible, to expose it to the
rest of the network is to use an object adapter. It provides the unique, or univer-
sal addresses for the distributed objects. The earliest versions of CORBA stan-
dard specified a certain API, which CORBA products should have implemented
in order to be CORBA compatible. That special API was for the Basic Object
Adapter (BOA). BOA had operations required for maintaining and exposing ob-
jects as able for remote invocation and included operations of registering and un-
registering object available for remote invocation. The fact that BOA was too

STUB

SKELETON

CLIENT
OBJECT

DISTRIBUTED
OBJECT

2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 237

loosely specified caused adoption of a new object adapter standard called Port-
able Object Adapter (POA).

3.2 More on CORBA
CORBA standardize the way in which ORB turns actions on the object into
packets, down to bits. Thus, CORBA in fact standardize streams and packets,
allowing any CORBA compatible software to communicate, apart from the ven-
dors. CORBA provides a common standard for packet format-General Interoper-
able Protocol (GIOP). It standardizes the way TCP/IP is used to communicate
between clients and servers-Internet Interoperable Protocol (IIOP).
Limitations to CORBA
Since CORBA works with many programming languages (such as C, C++, CO-
BOL, ADA, Smalltalk, Java), it can provide only a minimal toolset common to
these very different languages. As the least-common-denominator, CORBA can
not have features such as garbage collection (C++ lacks it), serialization of ob-
jects (not available in COBOL), primitive meta-class support (poorly supported
in Java).
CORBA does not support mobile code, although Object Management Group
(OMG) is working on an extension called Objects-By-Value and mobile agent
framework [1].
Distributed systems consist of few servers and many clients. Servers are usually
kept under close supervision, and software upgrading on server side is not a
problem. However, upgrading client side software can be very daunting task.
Distributed object tools do not offer any solution to this problem.
CORBA does not support broadcast communication, nor the way to encapsulate
clients and servers in distributed system within components. CORBA objects are
essentially static. In spite of all this, CORBA has successfully provided powerful
capabilities in every language it was implemented in and made distributed soft-
ware developer life much easier.

4. Mobile Objects

The mobile object applications exchange complete objects, including their state
(all the current values of all member variables of the object) and implementation.
Distributed applications, in opposite, communicate whit each other by sending
packets.
Mobile objects move their code and state between two or more applications. Java
enables such behavior through Object Serialization and ClassLoader [1]. Object
Serialization provides an automatic mechanism for reading and writing state of

238 Proceedings of the Second International Conference on Informatics and Information Technology

an object to a data stream. ClassLoader locates and loads the bytecode for a Java
class, even across the network, see Fig. 2.
Mobile object differ from mobile agents in not being able to act on their own.
Mobile objects are not autonomous and they cannot move themselves.

Figure 2: Mobile object moving mechanism

4.1 Object state
Object state is a state of all member variables of the object. The state of an object
does not include source code in Java (this is not correct for some weakly typed
languages). Object Serialization is responsible for copying the object to a stream.
Mobile object tools should just write and read the stream. In order to be serializ-
able, object must implement one of two special base interfaces:
java.io.Serializable, or java.io.Externalizable. The first interface provide auto-
matic serialization to a stream, and the objects that implement the second inter-
face must implement their own methods that are responsible for writing and
reading the object to a stream, see Fig. 2.
Object serialization automatically copies member variables of an object into the
stream, but only if they are not static or transient.

4.2 Class loading
The state of an object is not an object make. No code is associated with the val-
ues of the member variables. In mobile object construction, the flexibility of Java
class loader is critical. When the object arrives in a new address space, the re-
quired class for the object should be found and an instance should be created

2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 239

with the serialized state. If the class for the object is available in local address
space, there is no need for a class to be downloaded from network, see Fig. 2.
The first thing that Object serialization writes to the stream is a ClassDescriptor-
object that describes the class for that particular object. The reader of the stream
uses this object as information about the class that is to be instantiated.

4.3 Problems
Mobile objects move across the network. This is not complete truth. What really
happens is cloning object inside a remote address space. After the “moving” of a
mobile object, in a mobile object system exist two copies of the same object: one
in the local address space, and the other in the remote address space, see Fig. 3.

 moving mobile object

 through serialization and

 class loading
locale address space remote address space

Figure 3: Moving mobile objects

If the object in the local address space has some references that point to it, it is
impossible to destroy it, because of the basic premises of the languages with gar-
bage-collection capabilities. Modifying all the references is sometimes impossi-
ble. Some mobile object tools provide certain mechanisms for securing object
identity, but it varies from tool to tool.
The issue of the security is always weak point in distributed systems, and it is not
different with the mobile object/agent systems. Java’s SecurityManager, built on
a send-box principle, is an effective way of protecting hosts from malicious
agents. The problem of protecting agents/objects from malicious host has not yet
been successfully solved.

5. Mobile Components
Mobile objects become too low level and complex to work with. Mobile compo-
nents in association with component integration framework enable developer to
use pieces of already existing functionality and compose them (by few drag-and-
drop mouse operations) in a new application. JavaBeans form the component
standard for Java [2]. An object with a set of associated objects represents Java-
Bean. Each JavaBean may have properties, methods and events; just like an ob-
ject. Beans are stored in JAR files. JAR file is a ZIP archive that contains all the

Mobile object Mobile
object’s clone

240 Proceedings of the Second International Conference on Informatics and Information Technology

files relevant to the JavaBean, together with a metadata file, which specify
which classes are Beans and which are just associated classes and resource files.
The Jar file contains Beans in two formats: as a class or as a serialized object.
This second approach enables Bean, together with its current state to be pickled
into the JAR file, so the Bean does not loos all of its state between invocations.
In March 1998., Enterprise Java Beans (EJB) was first released. According to
Sun specification, the EJB architecture is a component architecture for the devel-
opment and deployment of object-oriented distributed enterprise-level applica-
tions. Applications written using EJB architecture are scalable, transactional and
multi-user secure [1].

6. Caffeine
Caffeine is a tool in Borland’s VisiBroker for Java. Its design enables writing
CORBA applications for Java developers as simple as possible. CORBA requires
the developer to learn IDL and to use the special automatically generated files
called stubs and skeletons. Caffeine compiles Java interface directly into IDL.
Any object that implements that Java interface may be used as a distributed ob-
ject, without requiring a stub or skeleton. The CORBA stubs and skeletons still
exist, but they are hidden from the developer. Converting Java interface into a
CORBA interface is quite difficult. CORBA has a limited set of data types, and
Java has an extensible set of types. Mapping is accomplished through Object Se-
rialization. The state of a native Java object can be communicated between dif-
ferent Java applications developed with Caffeine. In Caffeine, the stub is respon-
sible for providing the mechanism for moving native Java objects across the
network. Skeleton is responsible for reading native Java objects, transferred as IN
parameters in a remote invocation, and for writing those Java objects which are
used as OUT parameters in a CORBA system.
Formally, mobile object cannot be developed in CORBA (OMG does not have a
specification for a mobile object). Never the way, Caffeine vendors implemented
mobile object technology in their product.

6.1 Mobility features and security
The Caffeine has a feature called pass-by-value. Pass-by-vale is a common fea-
ture in distributed system in which the values for an object move from one place
to another. The Caffeine also includes implementation mobility. Thus, the Caf-
feine has basic mobile object tool features, but does not support moving threads,
customized class loading and other.

2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 241

The Caffeine is compatible with SSL protocol for protecting TCP/IP connection
from prying eyes and unauthorized modifications. No other security subject is
addressed by this tool.

7. Voyager
Voyager is an ORB developed by ObjectSpace. Its team merged distributed ob-
ject and agent technology. Voyager agents can move between different applica-
tions, in opposite to distributed objects, which are restricted to the application in
which they were created. Voyager enables agents to be constructed in remote
processes. It also enables a host of other features for supporting mobile agents,
including security and persistency engine.
Voyager has a notion of place process. It provides home for agents moving from
host to host. This place process is called voyager in the Voyager environment.
Voyager objects, which are remotely constructed, live within the voyager place
process. Its remote reference is called proxy.

7.1 Mobility features
Mobility implementation in Voyager can take several different forms. First, ob-
ject can be treated as an agent. For Voyager agent is an object that can move it-
self around the network. Other applications can interact with this agent object
through the agent’s proxy, which can be listed in Namespace. Making an object
into an agent in Voyager is a meter of accessing the Agent facet of an object.
Voyager supports a notion of facets for objects. Facets are value-added inter-
faces that Voyager supports for providing additional functionality to objects.
Each facet represents a particular type of functionality that can be used to ma-
nipulate objects in Voyager. By invoking the Agent facet of an object, an agent
moves, or can be moved, across the network. The moving of the Agent object is
accomplished through Object Serialization. The Agent is actually cloned in a
destination process and a forwarder is left to redirect any future requests to the
new host of the object. The original instance of the object is destroyed. All re-
quests for Agent received during Agent serialization should be temporarily
queued.
Second, Voyager objects can be explicitly moved to a new location. In order to
move an object to a new destination explicitly, moveTo() method on the Mobil-
ity facet must be invoked. The mechanism is much the same as for moving
Agent object. Neither Agents, nor explicitly moved object ever become a true
part of the host application and they are accessed through their proxy.
Third, objects, which are part of the remote invocation are serialized and copied
out to the remote host as a part of remote invocations. A remote virtual machine

242 Proceedings of the Second International Conference on Informatics and Information Technology

reads the serialized object, the data is deserialized and converted back into an
instance of the object. This way of moving object provides the highest level of
integration between mobile object and its host application. The objects moved in
this way, will not move to another location on their own. References to them are
normal Java object references to a local instance of the object that lives within
the application.
All these mobile objects, whether agents or simple serializable objects, must
java.io.Serializable interface whether directly or through indirectly through the
Agent class.
Voyager uses a set of resource class loaders to load classes and other resources
from URLs or other resource sources. An application can register its own re-
source loader.

7.2 Security
Voyager protects hosts from malicious objects using normal Java sandbox secu-
rity model [1]. It is implemented in VoyagerSecurityManager, which is not used
by default. By invoking operations on the VoyagerSecurityManager, the Java
Virtual Machine can check to see if particular object has rights to perform a spe-
cific operation.

7.3 Object identity
In the Agent and Mobility approach in Voyager, Agent objects can be accessed
only through a virtual reference. Direct Java references to the underlying instance
of the Java object are not allowed.

Figure 4: Voyager solution for object identity

The virtual reference can be updated with the new position of the object, after its
migration, see Fig. 4. This capability avoids confusion that might be associated
with cloning the object to a new virtual machine, as is usually the case with mo-
bile object tools. Any virtual references pointing back at the old instance of the
object may be forwarded on a new location, because Voyager provides a For-
warder object to accomplish this task.
The “ordinary” serializable object cloned across the network causes any local
Java object references (in the local virtual machine that point to the serializable

CLIENT OLD SERVER NEW SERVER

proxy agent forwarder

2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 243

object before it is cloned) still point back to the same local instance. It is up to the
developer never to use the old instance and to redirect all future requests to the
new instance in the remote virtual machine.

7.4 Concurrency
Voyager provides a straightforward thread-pooling facility. Java threads are fa-
cades over operating system threads. Voyager applications have a thread pool
that is used to recycle threads for later use in order to prevent the operating sys-
tem overhead normally incurred when threads are repeatedly created and de-
stroyed.

7.5 Object sharing
Most of the Internet communication is on a point-to-point basis – a single client
to a single server [1]. A distributed system does not fit well with this approach.
Typical situation in distributed system is one server and many clients. The host’s
performance of sending 250000 copy of information to the clients is very poor,
unless it uses some tool for broadcasting information. IP Multicast needs only
one copy of the data to be sent from the host.
A Voyager Space is an IP Multicast-based communication mechanism that can
send data to a group of multiple recipients. Objects are added to Space by invok-
ing the add operation on Space. When a Space issues a multicast invocation on
each participant, the arguments passed in the invocation are serialized and deliv-
ered to each participant. The Space is just any old Voyager place process.

8. RMI – Remote Method Invocation
RMI is product of JavaSoft. It is an ORB built into JDK 1.1 (Java Development
Kit version 1.1) [1]. Two Java applications or applets can invoke each other’s
objects through RMI. RMI enables Java developer to declare the methods that
are available for remote invocation using a normal Java interface rather than a
separate language like IDL. RMI also has a notion of stub and skeleton. Their
role is the same as in the other ORBs. RMI’s requirements for interfaces that are
used with distributed objects are: all interfaces to distributed objects must extend
java.rmi.Remote and all operations on such interfaces must throw
java.rmi.RemoteException.

9. COM/DCOM

COM components integrate well with many development environments. The
goal of COM is to enable the quick addition of components into new application.

244 Proceedings of the Second International Conference on Informatics and Information Technology

Java and COM/DCOM are products of the opponent vendors, and have totally
different philosophy. Microsoft virtual machine implements the Java standard to
a point. Microsoft does not implement RMI or CORBA because it perceives
technologies as competitive with DCOM: There is a way to use them together,
but then Java software looses the benefits of “write once, run anywhere” princi-
ple and can be run only on the Windows operating systems. On the other hand,
COM enables the quick addition of components into new applications.
COM and Java integration goes as follows: every COM components is mapped
into a generic Java class called ActiveXControl. This class is a handle to any
COM component.

9.1 COM and Java
Microsoft has made COM very easy to use within Java programs. Creating a
COM component within a Java program requires nothing but a constructor-like
invocation. COM and Java integration has certain limitations, such as: COM
components cannot accept Java objects as arguments. COM supports only lim-
ited set of types, and Java objects are not included in that set. COM’s integration
with Windows operating system is also a limitation: when a COM component is
used within a Java program, the Microsoft virtual machine must use the Win-
dows Registery to determine the location of the COM component.
Developing a Java object compatible with COM could not be easier: Microsoft
supplies a tool called javareg.exe that can register any java object as a COM
component.

9.2 DCOM
DCOM introduces distributed computing to COM. Unlike other distributed com-
puter tools, which are responsible for communicating among applications that
make up distributed system, activating new distributed objects on demand, and
providing security to the distributed objects, DCOM leaves everything up to the
operating system. DCOM uses the information compiled into the COM compo-
nent to determine its interfaces at run time., and because of that stubs and skele-
tons are not always required.
Some system configuration is needed to use COM components with DCOM. The
tool used for this operation is DCOMConf.exe. For each COM component on the
system, DCOMConf.exe controls when and how the component will be created.
In DCOM components are referred to through a pointer to a special COM inter-
face called IDispatch interface. The pointer to IDispatch interface may be sent
to other computers. The value of the pointer itself is not sent because of the dif-
ferent physical memory address spaces involved in a distributed system.

2nd Int. Conf. CiiT, Molika, 20-23.Dec.2001 245

10. Conclusion
Seen so far, the most complete tool for mobile objects, agents and components is
Voyager. Microsoft has recently offered the .NET tool, the ancestor of the
COM/DCOM. It has not yet been evaluated. There are a lot of experimental mo-
bile agent tools, developed in university laboratories, as well as Java packages,
which should help developers to build robust distributed software. Java’s built in
mechanism for serialization is of the greatest importance.

11. References

1. Jubin H., Friedrichs J.(2000), Enterprise Java Beans by Example, Prentice
Hall

2. Java 2 Platform SE v1.3, www.java.sun.com
3. Nelson J. (1999), Programming Mobile Objects with Java, Wiley Computer

Publishing
4. RFC, Network Working Group
5. Slama D., Garbis J., Russel P., (1999), Enterprise CORBA, Prentice Hall

