
The 7th International Conference for Informatics and Information Technology (CIIT 2010) 

©2010 Institute of Informatics. 

OVERVIEW OF THE GUHA METHOD AS A DATA MINING TECHNIQUE 

 
Viktor Todorovski 

Faculty of Electrical Engineering 

and Information Technology, UKIM 

Skopje, R. of Macedonia 

Ivan Chorbev 

Faculty of Electrical Engineering 

and Information Technology, UKIM 

Skopje, R. of Macedonia 

Suzana Loskovska 

Faculty of Electrical Engineering 

and Information Technology, UKIM 

Skopje, R. of Macedonia 

 

 

ABSTRACT 

This paper is concerned with current applications and 

researches of GUHA, a method for hypothesis generation. 

The GUHA method is very promising in the field of 

association rules data mining. Some of the current software 

implementations of the GUHA procedures offer simple 

mechanism of integration with BI processes, especially where 

large data sets are being processed. To use data for 

processing, it must first be pre-processed or aggregated and 

after that, as a data set to be used by the implementations of 

the GUHA procedures. The most preferred processing data 

representation are bit string cards of categories, mainly 

because logical operations can be easily performed on such 

representation of data. Since GUHA has a significant 

statistical and logical background it is taken as very relevant 

in positive and negative association rules mining, and also in 

interesting hypothesis discovery.   

I. INTRODUCTION 

Unary Hypotheses Automaton or GUHA is a method 

consisted of procedures originated in Czechoslovak Academy 

of Sciences, in the mid sixties of the 20th century [1]. It has 

not been widely accepted until the 1980’es, but since then it 
emerges as a promising Data Mining method and strongly 

continues to develop. Its main principle is to let the computer 

generate and evaluate all hypotheses that may be interesting 

from the point of view of the given data and the studied 

problem. This principle has lead both to a specific theory and 

to several software implementations. Whereas the latter 

become quickly obsolete, the theory elaborated in the mean 

time has its standing value [4]. Typically, the hypotheses 

generated have the form “Many A’s are B’s” (B is highly 
frequented in A) of “A, S are mutually positively dependent” 
[2]. It can be said that GUHA is a method of automatic 

generation of hypotheses based on empirical data (thus a 

method of data mining). GUHA is a kind of automated 

exploratory data analysis: it systematically generates 

hypotheses supported by the data [3]. The nowadays popular 

term “association rules” in data mining, has occurred for the 
first time in the paper on GUHA [1] in 1966. A second 

feature, very important for GUHA, is its explicit logical and 

statistical foundations [2]. “The function of GUHA is to offer 
hypotheses, not to verify previously formulated hypotheses.” 
This makes GUHA a method of exploratory data analysis (as 

opposed to confirmatory data analysis); since the 90-ties of 

the 20-th century the term “data mining” has been in use for 
such methods mainly if they deal with very large data sets. 

Usually the data to be processed by GUHA procedures are 

represented as rectangular matrix with many columns (about 

ten and more) and many rows (hundreds or thousands). But in 

KDD (Knowledge Discovery in Databases) processes, which 

are usually data mining processes, we have relations between 

such matrixes (tables), therefore master-detail cardinality. In 

this type of cases the data is pre-processed and one large 

matrix is created. This is usual process in Business 

Intelligence and Data warehousing. As described in [6], 

relational data mining search for methods for KDD that can 

use more than one data table directly, without transforming 

the data into a single table first and then looking for patterns 

in such an engineered table. In many scenarios, leaving the 

data in relational form can save a lot of information that can 

be later expressed in the form of relational patterns. Single-

table patterns are simply less expressive. However, in case of 

high pattern expressiveness there is higher computation time, 

which in some applications of data mining is very crucial. 

Because GUHA is based on simple logical and statistical 

analysis as result we get easily measurable results of 

hypothesis support and confidence. This is used as an 

advantage in many new studies for simple decision support 

system (DSS) advice explanation or in background 

knowledge confirmation. The goal in [7] is “to contribute to 

the discussion concerning definition of valid novel, 

potentially useful, and ultimately understandable pattern”. 
Data mining is a process used for identifying such patterns in 

data, where the GUHA method has significant theoretical and 

practical proof of effectiveness. Simplest forms of presenting 

patterns in an understandable context are aforementioned 

association rules. Usually we are not interested in the 

“classical” association rules of the form X¬→Y where X and 
Y are sets of items. The intuitive meaning of X→Y is that 
transactions (e.g. supermarket baskets) containing set X of 

items tend to contain set Y of items. Widely accepted are the 

two measures of intensity of association rule, confidence and 

support. Paper [7] elaborate how these measures can be used 

to get interesting association rules. 

Another very interesting area of future research is the data 

mining of negative and positive association rules in business 

intelligence. In [9] a theoretical and practical display of such 

methods is proposed. The negative association rules, in form 

of anti-patterns have high importance in banking or tax fraud 

detection software. 

In the next sections, the GUHA method is going to be 

explained along with some of the association quantifiers. It is 

explained how data needs to be represented for processing. 

Current software implementations of GUHA procedures are 

presented. 

  



The 7th International Conference for Informatics and Information Technology (CIIT 2010) 

 

II. GUHA METHOD AND ASSOCIATION RULES 

A. Data representation 

GUHA procedures natively work with matrix data, rows and 

columns representing the information about certain problem. 

The data should be discreet, non-stochastic in repetitive 

processing. Data to be processed can be represented as a 

rectangular matrix M where rows correspond to some objects 

and columns to their attributes. For example, objects may be 

patients and attributes are symptoms and diseases; or objects 

are bank transactions and attributes are various items 

describing them (for example as kind of loan etc.) – note that 

this widely accepted terminology – transactions and items – is 

going to be used. The value in the i-th row and j-th column is 

the value of j-th attribute for the i-th object. The value may be 

binary (yes-no, coded by 1 and 0), integers or real numbers, 

the “usual” case being the binary. 
 Logic is used to code hypotheses. Give each attributes 

(matrix column) a name (e.g. SEX; AGE; …). For any subset 
X of the domain of an attribute P; P:X is the property saying 

“the value of P is in X”, e.g AMOUNT:(>10000$). If P is 
binary (e.g. IS-MARRIED) then P stands for P = YES and ¬P 
(negation) for P = NO. The formula P : X is called a literal 

(atomic formula). One may form conjunctions of literals, e.g. 

P1 : X1 & P3 : X3 & P7 : X7 is a conjunction of three literals. 

The i-th object satisfies this conjunction if its value (in the 

i¬th row of the data matrix) of P1 is in X1; value of P3 is in 

X3 and value P7 is in X7. Such conjunctions describe 

composed properties of our objects [5]. 

 For simplicity of data representation as is stated in [2], 

the data processed by GUHA can be a rectangular matrix of 

zeros and ones, the rows corresponding to objects and 

columns to attributes. (Needless to say, much more general 

data can be processed). The latter approach is used more with 

database data processing where rows and discreet column 

data is in bit string representation. 

 Another alternative approach on data representation in 

data mining with the GUHA method is the Bit String 

approach, as in [8]. The basic idea with the Bit String 

approach is to “index” and represent all data that is being 
analyzed in strings of bits. After that the procedure of 

evaluation of logical expressions is very straight forward. 

This approach of data representation makes it possible to use 

simple algorithm and data structures to efficiently compute 

necessary frequencies of the four fold table (see II.C). 

The bit string represents each category of each attribute  

(i.e. each of its possible values) by one string of bits. This 

string is called card of category [10]. The attribute City is 

used as an example in Figure 1. The attribute City has 33 

categories: Skopje, Kumanovo, Kratovo, Ohrid, …, 
Strumica,…,Krushevo. 

In many data sets that we want to analyze, missing 

information in attributes is a usual problem. The GUHA 

method and its procedures have few techniques of handling 

such data. 

 

Figure 1. Cards of categories 

 Usually the software implementations of the GUHA 

procedures offer secured, deleting, optimistic and xxSec 

missing information handling. Deleting: Before evaluating a 

sentence, objects with missing information in antecedent or 

succedent are left out. Optimistic: No objects are left out. If a 

sentence is evaluated as true under optimistic processing of 

missing information, it means that the missing information 

could be replaced by valid values in such a way that the 

sentence would be true (i.e., that such completion exists). It is 

called optimistic because the best case scenario is assumed. 

Secured (pessimistic): No objects are left out. If a sentence is 

evaluated as true under pessimistic processing of missing 

information, it means that it would be true under any 

completion of missing information. This method is called 

pessimistic because it is assumed the worst case scenario. 

xxSec: Before evaluating a sentence, objects with missing 

information in both antecedent and succedent are left out; the 

processing is then secured on the remaining set of objects. For 

more explanation on antecedent and succedent see II.B, and 

for more technical explanation of missing information 

processing by GUHA see [11] chapter 4. 

 Relational databases present the problem of 1:N 

cardinality of objects, or master-detail data relations. The 

term virtual attributes is proposed in [6], where a virtual 

attribute of the master is actually an aggregate or an 

existential quantifier of the detail attribute(s) values where 

discretization on the values must be performed. 

B. Association rules 

An association rule is usually understood as an expression of 

the form of X→Y, where X and Y are sets of items. The 

intuitive meaning is that transactions (e.g. supermarket 

baskets) containing set X of items tend to contain set Y of 

items. Two measures of intensity of association rule are used, 

confidence and support.  

 An association rule discovery task is a task to find all 

association rules of the form X→Y such that the support and 

confidence of X→Y are above the user-defined thresholds 

minsup and minconf. The conventional algorithm of 

association rules discovery proceeds in two steps. All 

frequent item sets are found in the first step. The frequent 

item set is the item set that is included in at least minsup 

transactions. The association rules with the confidence at least 

minconf are generated in the second step [8]. 

 The relevant queries that the GUHA ASSOC procedure 

forms and tests in the data have the form A≈S, where A and S 

are interpreted as some (possibly compound) properties of 

objects, and ≈ stands for one of the statistical tests used in 

GUHA (represented by binary generalized quantifiers). 

 !



The 7th International Conference for Informatics and Information Technology (CIIT 2010) 

 

Property A is called antecedent, S is called succedent (or 

with previous notation X and Y respectively). In each run, 

GUHA systematically forms and tests all relevant queries 

satisfying the defined task [11]. 

III. GUHA THEORY 

A. GUHA Principle 

To explain the GUHA principle of operation we can take an 

example where we assume that we have persons as objects, 

and the data matrix includes attributes called: ‘age’, ‘sex’, 
‘salary’, ‘does transactions’, ‘checks balance’, ‘uses reports’, 
‘has kids’, ‘is married’, ‘good loaner’ (note the different sets 
of values of these attributes). We can use all these attributes, 

where all but the last one will occur in antecedent and the last 

one will occur in succedent definition. Suppose we opt for 

implicational tests: we shall take ≈ for a 90% implication. 

This means that, if the statement should be valid, ninety 

percent of objects satisfying A must also satisfy S. We are 

looking for potential causes of being/not being good loaner. 

Examples of relevant queries:   

• 1.A = ‘male & over sixty & high salary & is married & 

does transactions & not have kids’ , S = ‘good loaner’  

• 2.A= ‘female & over sixty & average salary & is married 

& does transactions & has kids’, S= ‘bad loaner’  

From the variable ‘age’, a property ‘over sixty’ will be 

created, for ‘salary’ high salary and average salary (and 

possibly also other properties) by the user. This is because 

GUHA only works with properties of objects, and the 

attribute ‘age’ or ‘salary’ is not a property. Similarly, from the 

variable ‘sex’ we can create two properties ‘male’ and 

‘female’. 

The two sentences 1. and 2. are relevant, thus GUHA will 

form them and test them in the data, by-and-by. How is the 

test performed? Each of the objects falls into one of four 

distinct groups: either it satisfies both A and S, or it only 

satisfies A, or it only satisfies S, or it satisfies neither. The 

frequency of the four cases are counted (we denote them a,b,c 

and d respectively, see Table 1). All of the tests operate with 

these four numbers. In case of 90% implication, we find out 

whether the fraction b⁄a is greater or equal to 0.9. If so, the 

sentence is valid in the data. 

B. GUHA Philosophy And Statistics 

From a logician’s point of view, relevant queries are 

sentences of a certain (first order) language, while the data 

matrix is a structure for this language. The structure is 

primary, and the language is determined by it. 

The data matrix determines a (set-theoretical) structure 

determine a (set-theoretical) structure M=‹M,v1,…vn›, where 

M is a (non-empty, finite) set of objects (formal counterparts 

of the objects investigated), and v1,…,vn are unary functions 

from M to R1,…,Rn respectively (suppose R1,…,Rn are given). 

The language of M contains unary function symbols (unary 

functors) V1,…,Vn. 

The data matrix may contain missing information. This will 

be represented in the most straightforward way, i.e., each of 

the sets of values R1,…,Rn contains an element X, and if 

vi(o)=X, then the variable i-th variable has missing 

information for object represented by o. 

We suppose that the input variables are categorized, and that 

coefficients are defined on them. Categorization of a variable 

given by vi is defined by a finite decomposition of its range 

Ri-X into nonempty sets (intervals). Suppose that for ith 

variable, represented by vi, the categories are Ri,1,…,Ri,ki. A 

coefficient of the i-th variable is an arbitrary nonempty proper 

subset of its categories. In the implementations of the GUHA 

methods, the creation of coefficients means creation of bit 

strings for the variable, and its negation (X [100010…010] 

and ¬X [011101…101]). 

ASSOC uses two connectives, & and ¬, to build up formulas 

from atoms; the negation ¬ may, however, only be applied to 

atomic formulas. An atomic formula is an expression 

(C)Vi(x), where Vi is the i-th functor of L, C is a coefficient of 

the i-th variable in M, and x is a variable (in the sense of 

predicate logic, i.e., a attribute for objects). 

The associated functions of quantifiers operate on four-fold 

tables. A four-fold table T4M (A, S) = (a, b, c, d) isan ordered 

quadruple of natural numbers, defined in Table 1. 

Table 1: four-fold table or 4FT 

 

a = a11 = Fr
M

1(A&S); b = a10 = Fr
M

1(A&¬S) 

r = a + b = a1. = Fr
M

1(A) 

c = a01 = Fr
M

1(¬A&S); d = a00 = Fr
M

1(¬A&¬S) 

s = c + d = a0.= Fr
M

1(¬A) 

k = a + c = a.1= Fr1

M 

(S); l = b+ d = a.0= Fr1

M 

(¬S) 

n=a+b+c+d 

Fr
M

1(A) is the number of objects in M for which A is 

evaluated as true. 

One of the most important notations with the GUHA method 

is quantifier, where a quantifier Q with associated function 

aQ is: 

• associational, if the following is true: if (a, b, c, d), (a’, 

b’, c’, d’) are two 4fts (where (a+b+c+d may differ from 

a’+b’+c’+d’), if aQ(a, b, c, d)=1, and if a’ ≥ a, b’ ≥ b, c’ ≤ c, 

d’ ≤ d, then aQ(a’, b’, c’, d’)=1.  

• symmetric, if the following is true: if (a,b,c,d) is a 4ft, 

aQ(a, b, c, d)=1, then aQ(a, c, b, d)=1.  

• implicational, if the following is true: if (a, b, c, d), (a’, 

b’, c’, d’) are two 4fts (where (a+b+c+d may differ from 

a’+b’+c’+d’), if aQ(a, b, c, d)=1, and if a’ ≥ a, b’ ≤ b, then 

aQ(a’, b’, c’, d’)=1.  

• a quantifier of similarity, if the following is true: if (a, 

b, c, d), (a’, b’, c’, d’) are two 4fts (where (a+b+c+d may 

differ from a’+b’+c’+d’), if aQ(a, b, c, d)=1, and if a’ ≥ a, b’ ≤ 

b, c’ ≤ c, then aQ(a’, b’, c’, d’)=1.  

• a quantifier of equivalence, if the following is true: if (a, 

b, c, d), (a’, b’, c’, d’) are two 4fts (where (a+b+c+d may 

 
M  S  ¬S   
A  a  b  r  

¬A  c  d  s  

 k  l  n  

 !



The 7th International Conference for Informatics and Information Technology (CIIT 2010) 

 

differ from a’+b’+c’+d’), if aQ(a, b, c, d)=1, and if a’+d’ ≥ 

a+d and b’+c’ ≤ b+c, then aQ(a’, b’, c’, d’)=1.  

C. GUHA quantifiers 

SIMPLE (simple deviation) quantifier has two parameters: 

BASE ≥ 1,δ≥ 0. This quantifier evaluates the association as 

following: A ~δ,BASE S is true iff a ≥ BASE and a·d > e
δ·

b·c. 

The BASE parameter is the minimum user defined threshold 

for positive evaluation of the attribute and δ is the minimal 

confidence needed in percentage (minsup and minconf). 

FISHER (Fisher’s test) where we have parameters: 

a£
+--+

=

÷÷
ø

ö
çç
è

æ

÷÷
ø

ö
çç
è

æ

-÷÷
ø

ö
çç
è

æ

åå
==

),min(

0

),min(

)!()!()!()!(!

!!.!.!.
.

cb

i

kr

ai idicibian

lksr

r

n

ir

l

i

k

 

Association rule A ~α,BASE S corresponds to a test (on the 

level α) of the null hypothesis of independence of A and S 

against the alternative one of the positive dependence. 

Implicational quantifiers are used in verification of sentences 

where only the values of a and b from the four-fold table are 

needed. The two-field table is T2M (A, S) =(a, b). Lower 

critical implication is categorized as an Auxiliary 

implicational test which is used in evaluating some of the 

quantifiers (e.g., LBOUND in LIMPL). 

5.00,10:

)1(),(

£<<<

£-××÷÷
ø

ö
çç
è

æ
= -

=

å

a

a

CPParameters

CPCP
i

r
raLBOUND ir

r

ai

i

 

LIMPL (lower critical almost implication) A =>
!

CP,α,BASE S is 

true iff a ≥ BASE and LBOUND (a, r) ≤α with parameters: 

BASE ≥ 1, 0 < CP < 1, 0< α≤ 0.5. Association rule A 

=>
!

CP,α,BASE S corresponds to a test (on the level α) of a null 

hypothesis H0: P(A|S) ≤ CP against the alternative one H1: 

P(A|S) > CP. If association rule A =>
!

CP,α,BASE S is true in data 

matrix M then the alternative hypothesis is accepted. 

Another widely used implication test with GUHA is 

FIMPLE (founded almost implication). With this test we have 

defined parameters: BASE ≥ 1, 0 < CP ≤ 1. A =>CP,BASE S 

is true iff a ≥ BASE and (a / r) ≥ CP. The numerical 

characteristics, the relative frequency PROB (a, r)= a / r,  

)/1()/1()/(.. rraraESA ×-×=  

 The association rule A =>CP,BASE S can be interpreted as 

“100·CP per cent of objects satisfying A satisfy also S” or “A 

implies S on the level 100·p per cent“. 

 Double almost-implications or quantifiers of similarity 

like FIMPL2, LIMPL2, UIMPL2 are symmetric (and 

similarity quantifiers in the sense of the above definition). Of 

these we will have only FIMPL2 or founded double almost-

implication. This quantifier is restricted with parameters: 

BASE ≥ 1, 0<CP≤1, where A<=>CP,BASES is true iff 

A=>CP,BASES and S=>CP,BASEA. The association rule 

A<=>CP,BASES can be interpreted as “100·CP per cent of 

objects satisfying A or S satisfy both A and S” or “A  S 

implies A  S on the level 100·CP per cent“. 

Quantifiers of equivalence like FEQ, LEQ, UEQ are 

symmetric and equivalence quantifiers in the sense of the 

above definition. The FEQ or CP-almost-equivalence is 

defined with parameters: BASE ≥ 1, 0 < CP ≤ 1. The 

association rule A ≡CP,BASE S is true iff PROB (a + d, 

a+b+c+d) = (a + d) / (a + b + c + d) ≥ CP. The association 

rule A ≡CP,BASE S can be interpreted as “100·CP per cent of 

objects have the same value for A and S”. 

GUHA method also has testing of the hopefulness of a 

sentence A ≈M S. In other words we set the limit aside BASE, 

and we have BASANT that a hypothesis must confront in 

sense that it’s computed association is hopeful. This can be 

used only when the user is highly involved with the data 

being processed. For each quantifier, there is a number 

BASANT ≥ BASE, such that if a sentence A ≈M S is true, 

then a ≥ BASANT. In a model M without missing 

information, a sentence A≈M S is hopeless if a = Fr
M

1(A&S) 

< BASANT. An antecedent A is hopeless if r = Fr
M

1(A) < 

BASANT, a succedent S is hopeless if l = Fr
M

1(S) < 

BASANT. We can extend the definition of hopefulness to 

literals as one-member conjunctions (disregarding the 

relevance criteria for the moment). 

IV. POSITIVE AND NEGATIVE ASSOCIATION RULES 

A. Positive Association Rules 

In [9] the positive and negative association rules are subject 

of elaboration. There is a Support-Confidence Framework of 

Positive ARs (Association Rules). This framework is defined 

as we have D = {t1,t2,. .. , tn} which can be a relational 

database of n records (or transactions) with a set of binary 

attributes (or items) I = {i1,i2, . . . , im}. For an itemset X I 

and a transaction t in D, we say that t supports X if t has value 

1 for all the attributes in X; for conciseness, we also write X 

t. By DX we denote the records that contain all attributes in 

X. The support of X is computed as supp(X)= |DX| n , i.e the 

fraction of transactions containing X. A (positive) association 

rule is of the form: X Y , with X, Y I, X Y = . Support 

and confidence of X Y are defined as supp(X Y)= 

supp(XY) and conf(X Y )= supp(XY)/ supp(X) respectively. 

A valid positive association rule has support and confidence 

greater than given thresholds ms and mc. Furthermore, an 

itemset X is called frequent if supp(X) ms. 

B. Negative Association Rules 

In [9] to define negative Association Rules for simplicity and 

to have more efficient algorithm, they have chosen the 

definition where the traditional itemset is maintained (so 

X,Y I), and to each positive rule X Y correspond three 

negative ones, X Y , X Y and X Y .A 

transaction t supports X Y if X t and Y_ t. Hence, 

the meaning of a rule like {i1} {i2,i3} is that “the 

appearance of i1 in a transaction t induces that i2 and i3 are 

unlikely to appear simultaneously in t”; hence a record 

containing i1 and i2, but not i3, supports this rule. It can be 

 !



The 7th International Conference for Informatics and Information Technology (CIIT 2010) 

 

verified that supp(X Y)= supp(X Y)= supp(X)−supp(XY) 

for X, Y I, and similarly support and confidence of the 

other kinds of negative ARs can be be straightforwardly 

deduced from the corresponding positive itemset supports. 

The total number of positive and negative ARs that can be 

generated is 4(3m−2m+1+1), of which 3m−2m+1+1, i.e., one 

fourth, are positive. Although theoretically the complexity of 

mining both positive and negative ARs is in the same level as 

that of mining only positive ARs, naive implementations will 

run into trouble; this is because one of the most important 

pruning aids in Apriori, namely that supersets of infrequent 

(positive) itemsets need not be considered as they cannot be 

frequent (downward closure property of supp), is no longer 

valid for negative itemsets. For the latter, a dual upward 

closure property of supp holds: if supp( X) ms, then, for 

every Y I such that and X Y = , (XY ) also meets the 

support threshold. As a consequence, all these frequent 

negative itemsets must be further considered, and many 

meaningless negative rules with large consequents can arise. 

In [9] section IV, is shown how to exploit the upward closure 

property to define an alternative definition of validity for 

negative ARs and to restrict the search space of their mining 

algorithm. For simplicity, they also limit themselves to 

support and confidence to determine the validity of ARs.  

 

C. GUHA And Negative Association Rules 

Very important area of future research is the negative and 

positive association rules in means of data mining and 

business intelligence. When we are searching for hypotheses 

and association rules between attributes in the data, the 

hypotheses with negative association are also important as the 

positive related ones, as they are more useful as anti-patterns 

and therefore more interesting in many domains. 

 The GUHA method procedures are very feasible of their 

using in negative association rules data mining framework, 

especially of performance aspect. Computation of statistics 

for negative support can be clearly seen in Table 1, where b, c 

and d are subject of examination and computation. With bit 

strings used, the time of computation is predicted to be linear 

related with positive evaluation of expressions, so with simple 

modifications on the implementation of the GUHA 

procedures, statistics for negative association rules can be 

easily obtained, including hypothesis propositions. 

D. GUHA Implementations 

1) GUHA +- 

GUHA+- is a student implementation of the GUHA method. 

The very first version of GUHA+-was produced as a 

teamwork project, a compulsory part of student curriculum at 

the Faculty of Mathematics and Physics, Charles University, 

Prague, in September 1998. The teamwork was supervised by 

Institute of Computer Science (ICS), Academy of Sciences of 

the Czech Republic. 

 This implementation only includes the 4ft based 

procedures, its fast and is provided with good user operation 

manual. Data specification is moderately easy, depending on 

initial data set format, and connection with formatted data set 

is very straight forward, offering various connection 

technologies. Hypothesis selection however is very difficult 

process, and the selector is restricted to some predefined 

categories. Selection can be modified, but it requires more 

specific knowledge of the software, and is not much user 

friendly. 

2) LISp Miner 

LISp-Miner is an academic project for support research and 

teaching of knowledge discovery in databases. It is suitable 

for students, pilot and mid-size KDD projects. The core of the 

system is consisted of several KDD procedures capable to 

give answers to various standard and non-standard analytical 

questions. Modules to solve some additional tasks are also 

included, especially in the area of rules formulation and 

translation in natural language. The LISp-Miner software can 

be freely downloaded, and has documented demonstration 

(see [12]) of its usage. Detailed instructions how to start and 

various types of user support are also available. There are 

various research activities and applications both in data 

analysis and in teaching related to the LISp-Miner project. 

 The LISp-Miner project is managed by teachers and 

students of University of Economics, Prague. Other 

researchers take part in the project realization too. There are 

several tens of publications related to the LISp-Miner project. 

This implementation covers more GUHA procedures in terms 

of KDD procedures as: 4ft-Miner, SD4ft-Miner, KL-Miner, 

CF-Miner, SDKL-Miner, SDCF-Miner, Action4ftMiner, and 

KEX. LISp Miner includes additional modules as data 

Preprocessing – TimeTransf, LM Knowledge and Sewebar as 

rules translation modules. 

V. CONCLUSION 

The GUHA method is very promising technique for attribute 

association rules data mining. It is proven very fast on large 

data processing mainly because of its logical and statistical 

foundations. GUHA implementations are standard software 

implementations, with which GUHA has been proven as 

efficient data mining tool. GUHA offers very simple logic of 

functioning and easily and user friendly results, in means of 

hypothesis (attribute association) discovery.  

GUHA can be involved in positive and negative 

association rules mining, especially with de-normalized or 

aggregated relational data, where with number of financial, 

medical and other types of application can be used.  

Further work may include some practical experiments in 

domains of Medical informatics, financial analysis, user 

behavior, and negative association rules. Most appropriate is 

the LISp Miner implementation cause of the extensible nature 

and still developing and active team. 

 

REFERENCES 

[1]  Hàjek P., Havel I., Chytil M.: The GUHA method of automatic 

hypotheses determination, Computing 1 (1966) 293-308.  

 !



The 7th International Conference for Informatics and Information Technology (CIIT 2010) 

 

[2]  Petr Hàjek, Tomàsh Feglar, Jan Rauch, David Coufal, The GUHA 

method, data preprocessing and mining. (Position paper.), Technical report 

No. 867.  

[3]  Esko Turunen, GUHA method for data mining, Tampere University of 

Technology (TUT), Department of Mathematics, PO Box 553, FIN¬33101, 

Tampere, Finland  

[4]  Petr Hàjek, Tomàsh Havrànek, Mechanizing Hypothesis Formation 

¬Mathematical Foundations for a General Theory, Springer-Verlag Berlin 

Heidelberg New York in 1978, ISBN 3-540-08738-9, Copyright reverted to 

the authors by a letter of 7/03/01  

[5]  Petr Hàjek, Briefly on the GUHA method of data mining, Journal of 

Telecommunications and Information Technology 3/2003 112 – 114  

[6]  Tomàsh Karbant, Relational Data Mining and GUHA, Department of 

Software Engineering, Faculty of Mathematics and Physics, Charles 

University, Praha  

[7]  Rauch, J., Interesting Association Rules and Multi-relational 

Association Rules, Communications of Institute of Information and 

Computing Machinery, Taiwan. Vol. 5, No. 2, May 2002. pp. 77–82  

[8]  Rauch, J. -Simunek, M., Alternative Approach to Mining Association 

Rules, in FDM 2002, The Foundation of Data Mining and Knowledge 

Discovery, The Proceedings of the Workshop of ICDM02, pp 157-162.  

[9]  Chris Cornelis, Peng Yan, Xing Zhang, Guoqing Chen, Mining Positive 

and Negative Association Rules from Large Databases  

[10] Rauch,  J.: Some Remarks on Computer Realisations of GUHA 

Procedures, International Journal of Man-Machine Studies 10, 1978, pp. 23-

28.  

[11] Zuzana  Honzikova, Institute of Computer Science at Academy of 

Sciences, Czech Republic, Guha +-User’s Guide, 1999  

[12] http://lispminer.vse.cz/index.html 

 

 !


