
The 7th International Conference for Informatics and Information Technology (CIIT 2010)

OVERVIEW OF THE SHADOW ALGORITHMS

Bisera Trpcevska Vladimir Nasteski

European Univercity European Univercity

Skopje, Macedonia Skopje, Macedonia

ABSTRACT

Realistic artificially rendered shadow has an important role in

the field of computer graphics. Hence, it is one of the most

attractive research topics in computer graphics. In this paper

we present an overview of several types of shadow rendering

algorithms. We present their characteristics, their

development and their goals. The goal of this paper is to

summarize the advantages of every shadow rendering

method, so that the appropriate approach for rendering

shadows can be chosen according to the specific

requirements. As a practical example, or a software

suggestion, we suggest the 3D design software packet

Autodesk Maya, as software that uses a combination of

algorithms for quality generating a realistic shadow.

Key words: shadow; computer graphics; shadow volumes;

projection shadows; ray-tracing; 3D

I. INTRODUCTION

Shadow provides the users with visual clues about

information on the scene, shapes and geometries, relative

positions among objects and complexity of shadow occluders.

In practice, rendering shadow is complex since there are a lot

of constrains involved in creating it, such as planar or non-

planar receivers, single or multiple light sources, hard-shadow

or soft shadows. Thus, modeling and rendering shadows is

always one of the most challenging issues of the research

fields of computer graphics.

In the recent years the development of the technology of

computer graphics hardware has been highly increased, and

people continuously look for more real shadow drawing. With

this development, many problems have emerged that are

related with the shadow rendering. Today, many computer

graphic scientists hard work to improve some of the existing

algorithms and to solve issues in some practical applications.

The main ingredient for generating a computer image is

rendering of shadows. The shadow is increasing the level of

realism of any spatial object on the scene. For real-time

rendering, variants of the shadow mapping algorithm [1] and

the shadow volume algorithm [2] are among the most popular

techniques.

The shadow volume algorithm divides the virtual world in

two areas: ones that is in shadow and others that are not.

Shadow volume algorithm is used in 3D computer graphics

that adds shadows for rendering a scene. The computer game

Doom 3 is an example of using the technique of the

algorithm. The shadow volume technique requires the

creation of shadow geometry, which can depend on the

implementation of the CPU.

In this paper we will show different techniques of many

shadow algorithms, including their advantages and

disadvantages. Also, we will define which of them faster

generate shadow.

This paper is organized as follows. In section II we discuss

about the shadow volume algorithm and its characteristics.

Section III presents practical algorithms which are

implemented in many 3D graphical softwares for generating

shadows, including shadow mappings, soft shadow volumes,

stochastic ray tracing and many miscellaneous techniques and

algorithms. In Section IV we propose the 3D design software

packet Autodesk Maya, in which we understood the technique

and the combination of algorithms for generating a realistic

shadow. At the end, we give a conclusion of the analysis that

we made about the algorithms.

II. SHADOW VOLUME ALGORITHM

The shadow volume algorithm is a popular technique for real-

time shadow generation using graphics hardware. In the 3D

space the shadow volume algorithm projects a shadow of the

objects at the back of the objects, because of the opaque of

the objects. Its position is determined with relationship

between the light and the occluders. It can render correct

shadows on any surface of the objects and also can cast

shadows on itself. The time it costs depends on the

complexity of the scene.

The first shadow volumes algorithm is presented by Crow [2]

and first implemented by Heidmann [3]. Their algorithm is

divided in two steps. First, a shadow volume is constructed by

extending silhouette of the occluder as viewed from the light

source along the direction of the light source. Then, after all

the volumes are calculated, it is determining which object or

which part of an object is inside any volume to determine

whether they are in shadow. The second process can be

executed using the so called stencil buffer [4]. If we want to

determine whether an object A in the scene is visible, we

follow a ray through a pixel until the ray hits the object, and

then we calculate the number of faces of the shadow volume

it crosses. While the ray is on its way to this object, we

increase the counter in the stencil buffer each time it goes into

a shadow volume and decrement the counter whenever the

ray goes out of a shadow volume until it reaches A after

crossing every volumes. Finally, if the counter is greater than

zero, then it indicates that the number of going into the

volumes is larger than the number of going out of them.

©2010 Institute of Informatics.

 !"

The 7th International Conference for Informatics and Information Technology (CIIT 2010)

Hence, A is located in shadow, or A is located outside the

shadow. To implement the shadow volumes algorithm, first

render the scene from the light point of view to define all the

shadow volumes and then determine whether the surface of

an object is in shadow according to the number of polygons

of shadow volumes a ray across from the viewer to this

object. (Figure 1)

Figure 1: Implementation of the shadow volume algorithm

The shadow rendering algorithms can be divided into

different categories according to different classification

standards. There are two types of shadow algorithms for light:

off-line shadow rendering algorithms and real-time shadow

rendering algorithms. Also, this algorithm can be divided to

shadow drawing of nontransparent objects and transparent

objects, or shadow drawing of polygonal models and complex

models such as clouds, fur or grass. There are different types

of light sources and they result in hard-shadow rendering

algorithms and soft-shadow rendering algorithms.

Many techniques are described in many papers [5], [6] which

are used in the process of implementation, where shadow

rendering algorithms are separate into scan-line methods,

shadow volumes algorithms, shadow mapping algorithms,

ray-tracing shadow algorithms and Z-buffer shadow

algorithms.

III. PROJECTION SHADOW ALGORITHMS

In this chapter we define how the projection shadows

algorithm casts shadows on planar surfaces through

projection transformation. Projection shadows algorithm is

the earliest shadow rendering algorithm. It is similar to the

process of projecting objects onto the 2D screen from the

view point. The projection shadow algorithms have simple

idea and can be quickly computed, but it is limited only to

casting shadows onto planar surfaces rather than general

surface on earth.

The idea behind the projection shadow algorithms is very

simple, and can be quickly computed. Still, there are some

weaknesses for this technique. For instance, the method anti-

shadow cannot be avoided if the light source is below the top

object and the method fake shadow also cannot be avoided if

the object is below the shadow receiver. This problem has

been solved by Heckert and Herf [7] proposed a method to

eliminate the anti-shadows and fake shadows, in which they

used accumulation buffer to produce soft shadows. The cost

of this algorithm is not expensive but the effect is less

realistic. Another method from Gooch et al. [8] is to

approximate the soft-shadows in the scene with a spherical

light source to gain speed. They average the projections by

moving up and down the receiving plane’s location. This

method has the advantage that the shadows created are

concentric, which generally looks better and so requires fewer

samples. But the shadow rendered in this method is usually

larger than the object so that it will induce distortion. In

reality, if an area light is larger than an object in a certain

range of distance, the object will have a smaller or

nonexistent umbra region.

In addition, we present the different techniques,

improvements, divisions of the projection shadow algorithm,

including shadow mapping, soft shadow volumes and

stochastic ray tracing. Also, there are many other

miscellaneous techniques and algorithms.

One of them is the radiosity algorithm. It computes the

diffuse global illumination solution that also includes soft

shadows from direct lighting.

The image-based soft shadow algorithm uses layered

attenuation maps for fast approximations.

A coherent ray tracer is used for generating higher-quality

images. The parallel ray tracer is used for a single sample per

pixel and soft edged objects. This algorithm is very fast, and

it is not physically based one.

EPI (edge-and-point image) is used to provide sparse

sampling of a scene. The silhouette edges and the shadow

boundaries are stored as edges in the EPI. With this technique

the image can be reconstructed using specialized filter. For

area light sources, both umbral and penumbral edges are

detected and stored as edges in the EPI.

A. Shadow Mapping

Shadow mapping is an effective real-time soft shadow

method. It has attracted much attention in the field of real

computer graphics. Williams [9] proposes that the shadows

can be quickly generated on random objects using the

common Z-buffer-based algorithm. His idea is based on

rendering the scene from the light's point of view. The

distance from the light source to the closest objects can be

obtained as the z-depth in the Z-buffer. When some objects

are rendered by a 3D graphics card, the depth of a generated

pixel (z coordinate) is stored in a buffer (the z-buffer or depth

buffer). This buffer is usually arranged as a two-dimensional

array (x-y) with one element for each screen pixel. If another

object of the scene must be rendered in the same pixel, the

graphics card compares the two depths and chooses the one

closer to the observer. The chosen depth is then saved to the

z-buffer, replacing the old one. The entire content which is

inside the Z-buffer is called the shadow map. Then, we render

the scene normally from the view point. For each pixel of the

scene, the geometrical position of the object can be well

known. If the distance between this object and the light is

 !"

The 7th International Conference for Informatics and Information Technology (CIIT 2010)

greater than the distance stored in the shadow map, then the

object is in shadow. Otherwise, it is illuminated.

Segal et al. [10] are presenting an idea by using texture

mapping technology. As first, from the light's point of view

the scene is rendered, and the depth values are loaded into a

texture which is also called the shadow map. Then, this

texture is projected onto the scene as drawn from the eye's

point of view using only ambient lighting. This determines

which region is in shadow. If the pixel's depth is equal to the

corresponding value in the shadow map after transformation

from the coordinate system of the light source into the

coordinate system of the viewer, then the value of this pixel

is set to 1, which indicates that the pixel is not in shadow.

Otherwise, the value is set to 0 indicating that the pixel is in

shadow. Finally, the whole scene is rendered with the global

illumination. The final color of each pixel is the color from

the ambient pass plus the color from the full rendering pass

multiplied by . If is 0, the pixel color is taken from the

ambient rendering pass, and if is 1, then the pixel color is

that of a normal rendering pass. It should be noticed that

when the shadow map is generated, required is the depth

buffer, that is, lighting, texturing, and the writing of color

values into the color buffer can be turned off. Moreover, as

long as the position of the light source does not change, the

shadow map can be repeatedly used because the shadows are

view-independent.

There is a method called silhouette maps, in which a shadow

depth map is augmented by storing the locations of points on

the geometric silhouette. With this the visual quality is

improved. This algorithm is based on the observation that

shadow maps perform well in most areas of the image, but

suffer from objectionable aliasing in the regions near shadow

boundaries. Algorithm has two stages. In the first stage, the

scene is rendered from the point of view of the light to

generate a depth map and a silhouette map. In the second

stage, the scene is rendered from the viewer’s perspective and

shadow determination is made. Since the depth map is the

same as in traditional shadow map implementations, there is

only discuss the generation of the silhouette map and its use

in shadow determination. The purpose of the silhouette map is

to provide information on the location of the shadow

boundary. The shadow boundary can be approximated by a

series of line segments.

To determine if a point in the scene is in shadow, we first

project it into light space. After that, we compare the current

fragment depth with the four closest shadow depth samples. If

they all agree that the object is either lit or shadowed, this

region does not have a silhouette boundary going through it

and we shade the fragment accordingly. This is similar to a

standard shadow map depth test. If the depth tests disagree, a

shadow boundary must pass through this texel. In this case,

we use the silhouette map to approximate the correct shadow

edge. Shadow edges separate regions of light and shadow and

also separate regions where the depth tests pass and fail.

B. Soft Shadow volumes

As defined in computer graphics, ray tracing [11] is a method

for generating an image by tracing the path of light through

pixels in an image plane and simulating the effects of its

encounters with virtual objects. When the light which is

emitted from a light source, it is being reflected or refracted

by geometric objects with certain material properties, and

finally appearing at the observer’s eye, typically on the film

of a camera. In order to minimize computational costs and

render just the visible parts of a scene, the algorithm works

backwards: it starts at the camera and sends a ray in the

direction of the current view. If this ray hits an object, then its

material is evaluated, and the final color information is

returned and stored. In case the material is reflective or

refractive, further rays are sent into the scene to compute

these contributions to the final color. This process is repeated

recursively until a certain traversal depth is reached. This

makes ray tracing wide spreading to many applications where

the image can be rendered slowly ahead of time, such as real-

time applications like computer games where speed is critical.

Ray tracing is capable of simulating a wide variety of optical

effects, such as reflection and refraction, scattering, and

chromatic aberration.

C. Stochastic ray tracing

Stochastic ray tracing algorithms compute shadows by

sampling an area light source using shadow rays. Calculating

the overall light propagation within a scene, for short global

illumination is a very difficult problem. With a standard ray

tracing algorithm, this is a very time consuming task, since a

huge number of rays have to be shot. For this reason, the

radiosity method was invented. The main idea of the method

is to store illumination values on the surfaces of the objects,

as the light is propagated starting at the light sources.

For reducing the number of shadow rays by utilizing image-

space coherence, Hart et al. [12] proposed a two-pass

algorithm. In the first pass, a small number of blocker-light

pairs are stored for each pixel. In the second pass, the stored

blockers are used for computing the visible parts of the light

source. Nevertheless, correct results cannot be guaranteed,

because the algorithm does not consider all occluding

polygons.

IV. PRACTICAL IMPLEMENTATION CONSIDERATIONS

Over the review on the many techniques and algorithms,

we’ve concluded that the 3D design software packet

Autodesk Maya [13] offers a dedicated “hardware renderer”

which uses the computing power of the graphics card. This

hardware renderer requires a workstation-class graphics

accelerator; but according to many experiments, even with

some of such expensive graphics cards it does not support

features such as shadows. Furthermore, this hardware

renderer is not intended to be used interactively, but acts only

as a speedy replacement of the usual software renderer. The

absence of a hardware renderer does not mean that typical 3D

design software does not support vertex and pixel shaders.

Rather, in several such software packages, real-time shaders

 !"

The 7th International Conference for Informatics and Information Technology (CIIT 2010)

can be used in the interactive rendering. This is intended as a

preview to assist game designers, who thus are able to build

models and materials with perfect visual feedback. Also, as a

software solution for rendering, or creating shadows,

Autodesk Maya is using a combination of the method shadow

map and ray tracing algorithm. Furthermore, we show a faster

soft shadow volume algorithm that will create faster, and

more realistic shadows.

A pseudocode for the algorithm is given in addition. In a

preprocessing stage (Construct Hemicube [14]) we extract

silhouette edge information from the entire scene and store it

into a static acceleration structure. Then, for each point p to

be shaded, the visibility between p and a set of samples on the

surface of the light source is computed (Shadow Query). The

light samples are the targets of the shadow ray queries that the

algorithm effectively replaces.

Construct Hemicube

 for each edge E

 if E is a potential silhouette edge from the light

source

 W wedge planes of E

 add W into all hemicube cells that overlap W

 end if

end for

Shadow Query(point p)

clear depth complexity counters of light samples

p` p projected onto the surface of the hemicube

LW list of wedges from hemicube at p`

for each wedge W in LW

 E edge associated with W

 if p is inside W and E is a silhouette edge from p

 project E onto the surface of the light source

 update depth complexity counters of light samples

 end if

end for

cast a shadow ray to a light sample with lowest depth

comp.

if ray is blocked

return all light samples are hidden

Else

return light samples with lowest depth comp. are

visible

end if

The pseudocode is a description of the two functions that

constitute the shadow algorithm. Construct Hemicube is

executed once for every frame and it builds an acceleration

structure for finding silhouette edges in shadow queries.

Shadow Query is executed for every point to be shaded. It

determines which point samples on the light source are visible

from the query point.

On Figure 2 we can see a 2D illustration of how the hemicube

footprints of penumbra wedges can be used for deciding

whether the corresponding silhouette edge may overlap the

light source from a given point. Wedge planes are determined

according to the light source and the silhouette edge. The

intersection of the wedge and the surface of the hemicube is

the hemicube footprint of the wedge. To determine if point p

may be inside the wedge, the point is projected onto the

surface of the hemicube from the center of the light source. If

the projected point p` is inside the hemicube footprint of the

wedge, point p may be inside the wedge. Otherwise point p is

guaranteed to be outside the wedge, and consequently the

silhouette edge does not overlap the light source from p.

Figure 2: Illustration of the soft shadow algorithm

V. CONCLUSIONS

In this paper, we have discussed several important types of

shadow rendering algorithms. Projection shadows algorithm

is simple to implement without complicated techniques

requirements, but confined to the scenes with planar

receivers. On the other hand, shadow volumes algorithm is a

geometry-based method which can render accurate shadows.

We analyzed the idea of shadowing mapping algorithm. It can

cast shadows on arbitrary objects easily and quickly. But also,

there are various techniques which are presented to improve

it.

Also, in this paper, we’ve presented series of algorithms that

improve the shadow mapped images. Many of them are

simple, run in real-time and work very well in hardware.

We’ve analysed those algorithms for one purpose. We

consider that by a combination of many techniques or

algorithms, so we can create an algorithm that can be fast and

efficient.

As a future work, we’ll propose a new algorithm that is a

synthesis of almost all shadow algorithms through the years,

which will generate shadow very fast and very effective, with

a great quality behind.

Our work was supported by the Faculty of Informatics of the

European University. Thanks to Jovan Pehcevski for the

comments and discussions during the research and for full

support that he gave us during the work on this paper. Also,

 !"

The 7th International Conference for Informatics and Information Technology (CIIT 2010)

we would like to thank Ivan Chorbev for the encouragement

he gave us to participate on this conference for informatics.

REFERENCES

[1] Williams L.: Casting Curved Shadows on Curved

Surfaces. In Computer Graphics (Proceedings of ACM

SIGGRAPH 78) (August 1978), ACM, pp. 270–274.

[2] Crow F.: Shadow Algorithms for Computer Graphics In

Computer Graphics (Proceedings of ACM SIGGRAPH 77)

(July 1977), ACM, pp. 242–248.

[3] Heidmann T. Real shadows, real time [M]. Iris Universe,

Silicon Graphics Inc. 1991, 18: 23-31.

[4] Web link:

http://msdn.microsoft.com/en-us/library/bb976074.aspx

[5] Timo Aila, Tomas A.-Moller. A Hierarchical Shadow

Volume Algorithm. Helsinki University of Technology. The

Eurographics Association 2004.

[6] Nan LIU, Ming-Yong PANG. A Survey of Shadow

Rendering Algorithms: Projection Shadows and Shadow

Volumes Department of Educational Technology Nanjing

Normal University, NNU. Second International Workshop on

Computer Science and Engineering. 2009

[7] Heckbert P S, Herf M. Simulating Soft Shadows with

Graphics Hardware [R]. Technical Report CMU-CS-97-104,

Carnegie Mellon University, 1997.

[8] Gooch B, Sloan P J, et al. Interactive Technical llustration.

In: Proceedings 1999 Symposium on Interactive 3D Graphics

[C], 1999, 31-38.

[9] L. Williams, “Casting Curved Shadows on Curved

Surfaces”, Computer Graphics (SIGGRAPH '78

Proceedings), 1978, 12(3): 270-274.

[10] M. Segal, C. Korobkin, R. V. Widenfelt, et al., “Fast

Shadows and Lighting Effects Using Texture Mapping”.

Computer Graphics (SIGGRAPH '92 Proceedings), 1992,

26(2): 249-252.

[11] A.J. van der Ploeg, “Interactive Ray Tracing”, 2006

[12] HarT, D., Dutr´e , P., and Greenberg, D. P. 1999. Direct

Illumination with Lazy Visibility Evaluation. In Proceedings

of ACM SIGGRAPH 99, ACM Press, 147–154.

[13] Web link:

Alias(R) Maya(R) 5.0. www.alias.com, 2003

[14] Hemicube – 3D computer graphics – Wikipedia

http://en.wikipedia.org/wiki/Hemicube_computer_graphics

 !

