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ABSTRACT

We are interested in the application of the semimartingale the-

ory in the complete market model consisting of two traded

assets. Through the Girsanov theorem the unique martin-

gale measure can be found and the replicating strategy can be

constructed. This is discussed on the Black-Scholed market

model.
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I. INTRODUCTION

In an arbitrage-free financial market model consisting of

risky and riskless assets we would like to price a new deriva-

tive security in the market by a self-financing portfolio of the

existing assets in the market. If this is possible for any inte-

grable contingent claim the market is said to be complete. It

has been shown in [1] that the completeness of the market is

equivalent to the martingale representation property and to the

existence of a unique equivalent martingale measureQ. Then,

a replicating strategy for the claim can be constructed using

only this measure, which also gives the unique price of the

claim.

Here, with an application of the Girsanov theorem it is ob-

tained that the process X is a semimartingale under the phys-

ical measure P. This is why it is justified in the first place to

assume that the price process is modeled by a semimartingale.

This brings us to discussion of the application of the semi-

martingale theory, Girsanov theorem and the martingale prop-

erty of the complete market model. We are interested in the

characteristics of the model of the basic portfolio, together

with the view that different investors have on it. We discuss

the meaning of the unique martingale measure and see how

it helps us in constructing the replicating strategy. After dis-

cussing the theoretical basics, we’ll see the application on the

Black-Scholes model, where the price process is driven by a

Brownian motion. At the end we give an example of the simu-

lated process under the physical and the equivalent martingale

measure.

II. COMPLETE MARKET MODEL

Let (Ω,F , (Ft)t∈[0,T ],P) be a probability space with a fil-
tration that satisfies the usual conditions. Here T denotes the

finite time horizon, FT = F and the σ-algebra Ft represents
the information observable at time t.

We observe a market consisting of 2 traded assets1. One is

riskless asset ( bond ) whose price process (Bt)t∈[0,T ] is as-

1 The model can be easily extended to a case with n stocks.

sumed to be strictly positive. The other is risky asset ( stock

) and its change of price is modeled by a stochastic process

(Xt)t∈[0,T ]
2 with continuous paths. The discounted process

Xt

Bt

is of our main interest and therefore we assume thatB ≡ 1.
We keep the notation Xt for the discounted process. The dis-

counted price process Xt is assumed to be a semimartingale

under the physical measure P, and this will be justified with a

result from the next section. This way we can use the power-

ful semimartingale theory in our model. Therefore we intro-

duce here the definition and a basic result for semimartingales,

needed later in the discussion.

An adapted, càdlàg process X is a semimartingale if it can

be written as Xt =Mt +At, t ≥ 0 where M is a local mar-

tingale and A is a process with locally finite variation and

A0 = 0.
In general this decomposition is not unique, but when X is

continuous, as in our model, it is unique, with M and A also

continuos. Semimartingales are of great importance in the

theory of stochastic integration - they are the most general,

reasonable stochastic integrators. It is the largest class of inte-

grators on which are preserved some convergence and approx-

imation properties for the operation of stochastic integration.

They also form a vector space invariant under stopping, local-

ization, certain change of filtration, C2-transformation (Itô’s

formula) and absolute continuous change of probability mea-

sure3. We discuss here this last property, given by the follow-

ing theorem.

Theorem 1. Let X = M + A be a continuous P-

semimartingale. Let Q be an equivalent probability mea-

sure, with a Radon-Nikodym derivative Z = dQ
dP

and Zt =
EP(Z|Ft) the coresponding martingale density 4. Then X

is also a continuous Q-semimartingale with a decomposition

X =N +B where

Nt =Mt −

∫ t

0

1

Zs
d 〈Z,M〉s t ∈ [0, T ] (1)

is a Q-local martingale and B = X −N has locally finite

variation.

An investor can create an investment portfolio whose dy-

namics is described by a trading strategy φ = (α,β). α and
β describe the amounts invested at time t in the stock and the

bond respectively. By definition, α is a predictable process

with α ∈ L2(PX). The amount of the stock should be deter-
mined before observing the information at time t, i.e. before

2 Further in the discussion, for all the processes we take t ∈ [0,T ], unless
otherwise specified.
3 We refer to [2] for details on part of the theory presented here.
4 Zt is defined here on [0,T] with Z = ZT .
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knowing the next stock price change. This is the meaning of

the predictability of the process α. β is in general an addapted

process. This means that the amount in the bond can be fixed

after time t, and by that adjust the value of the portfolio at

some desired level.

The value process of the portfolio is given by

Vt = αtXt + βt (2)

The value process is right-continuous with Vt ∈ L
2(P). The

accumulated gain and the accumulated cost of the strategy at

time t are given by
∫ t

0
αsdXs and Ct = Vt −

∫ t

0
αsdXs re-

spectively. We will be interested in self-financing strategies

( Ct = C0 for t ∈ [0, T ]P a.s. ). For such a strategy, the to-
tal wealth depends only on the initial investment V0 and the

gains and loses come only from the stock price changes, i.e.

Vt = V0+
∫ t

0
αsdXs.

A contingent claim ( or a derivative security ) is a financial

contract whose value at the time of maturity T depends on

the value of the underlying assets at time T. It is the payoff

of some financial instrument at time T and is modeled as an

FT -measurable random variable H ( here with an assumption
H ∈ L2(Ω,FT ,P)). For a given contingent claim H we are

looking for self-fainancing strategies φ s.t. VT = H , P a.s.

Such a strategy is said to be H-admissible, i.e. it replicates

H. If such a strategy exists, H is refered to as a attainable

contingent claim.

The main question is how, for a given contingent claim H

can we find a trading strategy φ = (α, β) that replicates H.
This would mean that at time T holding the portfolio with

the stock and the bond or holding the contingent claim would

make no difference, since P-almost surely their values would

be the same. This can also help us find the fair price of the

contract.

To give an answer to these questions we need the main re-

sult concerning the completeness of the market model.

III. MARTINGALE PROPERTY OF THE COMPLETE MARKET

In [1] the Harrison and Pliska have shown the following

theorem

Theorem 2. The following statements are equivelent:

a) Every contingent claimis in the presented model is attain-

able,

b) Any martingale M can be represented as Mt = M0 +
∫ t

0
γsdXs, where γ is a predictable process integrable

with respect to the semimartingale X,

c) There exists a unique measure Q equivalent to P under

which the process X is a martingale.

Market model in which a) holds is said to be complete under

the physical measure P. b) is known as the Martingale repre-

sentation property ( or Itô representation). We refer to Q in

c) as the equivalent martingale measure. For more detailed

discussion we refer to [1] and [3].

According to the last theorem, there exists a unique prob-

ability measure Q equivalent to P such that the discounted

process is a martingale under Q. Let Z = dQ
dP
. Since X is a

continuous martingale under Q, it is also a Q-semimartingale

with a representation Xt = Nt +Bt where B=0 Q a.s. Gir-

sanov theorem states that X is a semimartingale under P, with

a decomposition,

Xt =Xt−

∫ t

0

Zsd
〈
Z−1,X

〉

s

︸ ︷︷ ︸

Mt

+

∫ t

0

Zsd
〈
Z−1,X

〉

s

︸ ︷︷ ︸

At

This justifies our assumption that X is a semimartingale under

the basic measure P.

The measure Q will help us find the replicating strategy for

an integrable contingent claim H. With Ht = E(H|Ft) a mar-

tingale is defined, which, according to the previous theorem,

has the Itô representation

Ht = H0 +

∫ t

0

γsdXs (3)

Let

αt := γt, Vt := H0 +

∫ t

0

γsdXs, (4)

If we put βt := Vt−αtXt we get a strategy φ= (α,β) with

a constant cost Ct = H0. Starting with an initial investment

V0 =H0 and putting the amounts α and β in the stock and the

bond, we will have VT = H , i.e. we will replicate the claim

H. Now the question is: How to determine γ?

Since X is a Q-martingale, from (4) and the properties of

the Itô-integral, V is also a Q-martingale and

Vt = EQ(VT |Ft) = EQ(H|Ft)
5

For the covariation process 〈V,X〉t we have

〈V,X〉t = 〈H0+

∫ .

0

γsdXs,X〉t

= 〈H0,X〉t+ 〈

∫ .

0

γsdXs,X〉t

=

∫ t

0

γsd〈X〉s

(5)

As a result γt =
d〈V,X〉t
d〈X〉t

is the Radon-Nikodym derivative

of the measures generated by the processes 〈V,X〉 and 〈X〉.
By this we have constructed the replicating strategy (γ,V −
γX) using only the contingent claim, the price process and

the unique equivalent martingale measure Q.

IV. APPLICATION TO THE BLACK-SCHOLES MODEL

The Black-Scholes model describes a market consisting of

a bond and a stock with price processes B and X respec-

tively. The discounted process X is modeled by a Brow-

nian motion W and the probability space we work on is

(Ω,F , (FWt )t∈[0,T ],P). The dynamics of the process is given

by the following SDE

5 In general this process is defined by Vt = EQ(
H

BT

|Ft)
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dXt = µXtdt+ σXtdWt, X0 = x0 (6)

The solution of this SDE is given by

Xt = X0e
(µ− 1

2
σ2)t+σdWt (7)

where θ = µ
σ
is the market price of risk.

The process X is a semimartingale under the basic mea-

sure P. We would like to find the unique equivalent mar-

tingale measure Q under which X becomes a martingale.

Let Zt = e
−θWt−

1

2
θ2t on [0,T] be the solution of the SDE

dZt =−θZtdWt. It satisfies the Novikov condition, so it is a

martingale density for some measure Q equivalent to P6. Let

us see how the semimartingaleW ∗ =Wt+ θt changes under
the measureQ. The martingale part of its representation under

Q, by Girsanov theorem is

Wt−

∫ t

0

1

Zs
d〈Z,W 〉s =

=Wt−

∫ t

0

1

Zs
d〈θ

∫ s

0

ZudWu,W 〉u

=Wt− θ

∫ t

0

1

Zs
d(

∫ s

0

Zu〈W,W 〉u)

=Wt− θ

∫ t

0

1

Zs
d(

∫ s

0

Zudu)

=Wt+ θ

∫ t

0

1

Zs
Zsds=Wt+ θt=W

∗

t

(8)

Therefore the processW ∗

t is the Brownian motion underQ.

Then Xt = X0e
1

2
σ2t+σW∗

t is the solution of the SDE dXt =
σXtdW

∗

t . Therefore X is a martingale under Q and this is the

unique equivalent martingale measure.

Now that we have Q and the Radon-Nikodym density we

can proceed to find the optimal strategy as in the previous sec-

tion. With this we have seen how the semimartingale theory

and the Girsanov theorem help in answering the questions of

change of measure and finding the replicating strategy for a

contingent claim.
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