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ABSTRACT

We are interested in the problem of finding an optimal strategy

for a non-attainable contingent claim in an incomplete market

consisting of two traded assets. We discuss and compare the

Kunita-Watanabe and Föllmer-Schweizer martingale decom-

position and use them for finding the risk-minimizing trad-

ing strategy. The theory of stable spaces and minimal mar-

tingale measure is used and the differences in the models are

discussed.

Key words: Incomplete markets, Martingale decomposi-

tions, Kunita-Watanabe and Föllmer-Schweizer decomposi-
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I. INTRODUCTION

In an incomplete market non-attainable contingent claims

exist, they carry an intrinsic risk and their price is not unique.

The choice of the price depends on the approach to the hedg-

ing problem and the investor’s preference towards the risk.

The different equivalent martingale measures provide a range

of possible prices of the contingent claim. Compared to the

complete market model, there are different questions to be an-

swered - how to define a measure for the risk, how to construct

a trading strategy that minimizes the risk and which equivalent

martingale measure to choose. Under special assumptions of

the model, answers to these questions are given by the Kunita-

Watanabe and Föllmer-Schweizer decompositions.

Here we will compare the proposed solutions, including

the different assumptions for the models. First we introduce

the basics of the models and then discuss the two decompo-

sitions. Kunita-Watanabe martingale decomposition can be

used for finding the optimal, risk minimizing strategy, when

the discounted price process is a square-integrable martingale

under the basic measure P. When the price process is only

a semimartingale, under additional assumptions the Föllmer-

Schweizer decomposition can be used. The discussion on

the minimal martingale measure connects the two decomposi-

tions.

II. BASICS OF THE MODEL

We observe a market consisting of 2 traded assets. One is

riskless asset ( bond ) whose price process Bt is assumed to

be strictly positive. The other is risky asset ( stock ) and its

change of price is modeled by a stochastic process Xt with

continuous paths. The processes are constructed on a proba-

bility space (Ω,F ,(Ft)t∈[0,T ],P) with a filtration satisfing the
usual conditions. Here FT = F , T being the time of maturity,
and the σ-algebra Ft represents the information observable at

time t. Of our main interest is the discounted price process

Xt

Bt

, so we will assume that B ≡ 1 and have in mind thatXt is
notation for the discounted price process.

For a trading strategy φ = (α, β), (αt)t∈[0,T ] and

(βt)t∈[0,T ]
1 will be the amounts invested at time t in the stock

and the bond respectively. By definition, α is a predictable

process with α ∈ L2(PX) and β is in general an addapted
process.2 The value process of this portfolio is given by

Vt = αtXt + βt

and it is right-continuous with Vt ∈ L
2(P). The accumulated

cost process Ct is defined with

Ct = Vt −

∫ t

0

αsdXs

where the second term in the above equation represents the

accumulated gain by time t.

For a contingent claim, modeled here as an FT -measurable

random variable H, H ∈ L2(Ω,FT ,P), we are looking for
self-financing strategies3 φ that replicate H, i.e. VT = H P

a.s. Such a strategy is called H-admissible and if it exists H is

an attainable contingent claim.

The question of replicating a contingent claim is answered

in a complete market. In that model any contingent claim is

attainable and this is equivalent to the martingale property of

the market and the exsistance of a unique martingale measure

([5]). A replicating strategy can be found with the help of this

measure. We are interested in redefining this question when

the contingent claim is non-attainable. We need a new defi-

nition of an optimal strategy, since now any strategy carries a

risk. We follow the discussions from [3], [6], [7] and [8].

III. KUNITA-WATANABE DECOMPOSITION

We work in an incomplete market model and we assume

that the price process X is a square-integrable martingale un-

der the basic probability measure P. LetH ∈ L2(P) be a non-
attainable contingent claim. We are looking for H-admisible

strategies. Self-financing replicating strategies for H do not

exist ( as in the complete market case ), so we have to de-

fine a way of choosing the optimal H-admisible strategy. The

following risk-minimizing approach was proposed by Föllmer

and Sondermann ([9]).

For a strategy φ = (α, β) with a square-integrable cost

process Ct = Vt +
∫ t
0
αsdXs, we can define the conditional

1 In the rest of the paper, for all the processes t ∈ [0,T ], unless otherwise
specified.
2 For more explanation of the meanings of the model assumptions, we refer
to [1], [2], [3] and [4].
3 For these strategies the cost process is constant P a.s. and the total wealth
depends only on the initial investment and the stock price changes.
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mean-square error process

R
φ
t = E((CT − Ct)

2|Ft), (1)

This process measures only the remaining cost till the time of

maturity.

Every H-admisible risk minimizing strategy is mean self-

financing4 and has a value process which is a square-

integrable martingale. Therefore the same holds for the inte-

gral
∫ t

0
αsdXs and the previous definition makes sence. This

is why we will look for an optimal strategy only between the

mean self-finincing strategies.

A strategy ψ = (ξ, η) is called an admissible continuation
of φ at time t0, if φ coincides with ψ at any time before t0 and

also V
φ
T = V

ψ
T at the maturity T. It will be risk-minimizing if

at any time t ∈ [0,T ) , Rφ
t ≤ R

ψ
t , for any admissible continu-

ation ψ of φ at time t.

It can be shown that a unique risk-minimizing strategy

does exist and it can be constructed with the help of Kunita-

Watanabe decomposition. We introduce some notations and

part of the theory on stable spaces which we need for the main

result. Details can be found in [6], [10] and [11].

Let M2 be the Hilbert space of all L2-martingales on

(Ω, (Ft)t≥0,F ,P). For M,N ∈M2 we say that are weakly

orthogonal if E(M∞N∞) = 0, and strongly orthogonal ( no-
tationM⊥N ) if their productMN is a (uniformly integrable)

martingale. The last is equivalent to the quadratic variation

process 〈M,N〉 being a (uniformly integrable) martingale.
For F ⊂M2 we use the following notations

F⊥ =
{
M :M ∈M2,M ⊥ F

}

and

F⊥ =
{
M :M ∈M2,M⊥F

}

For any F ⊂M2, F⊥ turns out to be a stable space i.e. closed

and invariant under stopping. Even more, if F is a stable sub-

space ofM2, then F⊥ = F⊥. Therefore, for a closed sub-

space F of the inner product spaceM2, we have the decom-

positionM2 = F ⊕F⊥.
The following theorem gives the Kunita-Watanabe decom-

position of a square-integrable martingaleM ∈M2. With

S(F ) = ∩
{
G :G⊆M2, G is stable and F ⊆G

}

we will denote the stable subspace generated by F.

Theorem 1. Let F =
{
X1, ...,Xn

}
⊆M2 where Xi⊥Xj ,

for i += j. For any martingale X ∈M2 we define

AX =
{
α : α is predictable and E(α2 · 〈X

〉
)<∞}

Then

a) S(F ) =
{∑n

i=1(α
i ·Xi) : αi ∈ AXi

}
,5

b) AnyM ∈M2 can be decomposed as

Mt =M0 +
n∑

i=1

∫ t

0

αisdX
i
s

︸ ︷︷ ︸

∈ S(F )

+ Lt
︸︷︷︸

∈ S(F )⊥

(2)

4 The cost process is a P-martingale.
5 The notation α ·X represents the stochastic integral

∫
.

0
αsdXs

The theorem gives a characterisation of the stable space

S(F ) - each element of S(F ) can be represented as a sum
of stochastic integrals with respect to the elements of F.

SinceM2 = S(F )⊕S(F )⊥, any martingale has the Kunita-
Watanabe decomposition (2).

The component Lt here is orthogonal to all the integrals in

the decomposition.

We go now back to the market model, where the non-

attainable contingent claim H defines the square-integrable

martingale Ht = E(H|Ft). Since we have assumed that the
discounted price process X is also a square-integrable martin-

gale, we can apply the previous theorem and decompose Ht

as

Ht = E(H) +

∫ t

0

αHs dXs + LHt (3)

Let us now define the strategy φH = (αH , V H − αHX).
Here V H

t = Ht, t ∈ [0, T ] is the value process of the strat-
egy. Obviously this is an H-admissible strategy. Since the

cost process CH
t = E(H)+LHt is a martingale, this is a mean

self-finincing strategy. Let R
φ
t = RH

t = E((LHT −L
H
t )

2|Ft)
denote the intrinsic risc of H and also, let ψ = (α,β) be some
admissible continuation of φH for some t < T . It can be

shown that

R
ψ
t = E(

∫ T

t

(αHs − αs)
2d 〈X〉s) + (V

H
t − Vt)

2 +RH
t

R
ψ
t is minimized when αs = αHs on [t,T] and Vt = V H

t . But

since t is arbitraty on [0,T], α = αH and V = V H on [0,T].

Therefore R
φ
t ≤ R

ψ
t and φ

H is the unique admissible risk-

minimizing strategy.

IV. FöLLMER-SCHWEIZER DECOMPOSITION

In the previous discussion we have assumed that the pro-

cesses X and H are square-integrable martingales under the

basic probability measure P. In this part we assume that

X is just a semi-martingale under P, with a semi-martingale

decomposition X=M+A. Additionaly we assume that M is a

square-integrable martingale under P. For a contingent claim

H we are searching for strategies φ= (α,β) with a value pro-
cess satisfying VT =H . The process V is not a martingale, so

we can not apply the results from the previous discussion.

The cost process of the strategy is given by Ct = Vt −
∫ t

0
αsdMs−

∫ t

0
αsdAs. Now the last term also influences the

risk-process Rφ.

We say that an admissible strategy φ = (α, β) is locally
risk-minimizing6 or optimal if its cost process Ct is a square-

integrable martingale, orthogonal to the process M under P.

For such a strategy, we have

H = VT = H0 +

∫ T

0

αsdXs + LT (4)

with H0 = C0, Lt = Ct −C0 ∈ M
2, L⊥M and α ∈ AX .

This decomposition is called Föllmer-Schweizer decomposi-

tion. We see that it is similar to (2). Still, here X is no longer

a square-integrable martingale and L is orthogonal only to the

6 See [7] on details.
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martingale component of X , insteed of X itself. We can try to

work under an equivalent martingale measure but eventhough

X will become a square-integrable martingale, the process L

in (4) will change and it may no longer be a martingale.

For a contingent clain H, which has the decomposition

(4), we can define Vt = H0 +
∫ t

0
αsdXs +Lt and a strategy

φ = (α,V −αX). The cost process of this strategy satisfies
Ct = H0 + Lt, so C ∈ M

2 and C⊥M . Therefore, the de-
composition of H (4) is equivalent to the existance of a locally

risk-minimizing strategy. In [12] the last decomposition and

the optimal strategy were connected to the concept of the min-

imal martingale measure. An equivalent martingale measure

Q∗ is called minimal martingale measure, if any L ∈M2(P)
such that L⊥M under P, is also Q∗-martingale. When this

measure exists the two decompositions coincide and the opti-

mal strategy can be found as before. We present here the main

result from [12] and we will then be able to make the con-

nection between the two decompositions. More details can be

also found in [8].

For the semimartingale X, we consider the equivalent mar-

tingale measures Q with square-integrable densities Zt =
EP(ZT |Ft), where ZT =

dQ
dP
is the Radon-Nikodym deriva-

tive. Girsanov theorem gives us the semimartingale represen-

tation of the Q-martingale X =MQ under P

Xt =MQ
t =Mt +At

We will assume thatM ∈M2(P). The processes X and Z
can be decomposed as

Xt =Mt +

∫ t

0

ηsd 〈M〉s (5)

and

Zt = 1−

∫ t

0

ηsZsdMs +Nt (6)

with η ∈ AM , N ∈M2(P) and 〈N,M〉t = 0 (N ⊥M).
(6) is a characteristical decomposition of all the square-

integrable martingale densities. We are interested when (6)

with Nt = 0 a.s. is still a density of an equivalent martin-
gale measure. We use the notation of Doléans-Dade exponen-

tial E(X) for the solution of the SDE Zt = 1+
∫ t
0
Zs−dXs.

Combining Girsanov’s theorem and Novikov’s condition, we

get the answer with the following theorem.

Theorem 2. Let Xt be the continuous semimartingale given

with (5) and let Kt = −
∫ t
0
ηsdMs for t ∈ [0, T ]. If Z∗

t =

E(K)t = exp(Kt−
1
2 〈K〉t) is uniformly integrable, then it is

a density process for an equivalent martingale measure Q∗.

This process is directly connected to the minimal martin-

gale measure.

Theorem 3. a) The existance of the minimal martingale

measure Q∗ is equivalent to the square-integrability of the

process Z∗ = E(−
∫ .
0
ηsdMs). If it exists it is unique and

is determined by Z∗

T =
dQ∗

dP
;

b) Q∗ preserves orthogonality, i.e. if L ∈ M2(P) and
〈L,M〉= 0, then 〈L,X〉= 0 under Q∗.

We see that the only information that we need to construct

the minimal martingale measure is the information about the

process X. From its semimartingale decomposition we deter-

mine the processM and we can check whether the process Z∗

is square-integrable. If it is, Z∗T is the Radon-Nikodym deriva-

tive of the measure Q∗. Let now H be a contingent claim

H ∈ L2(P). Then, Z∗ ∈ L2(P) implies that H ∈ L1(Q∗).
We assume that the process H = EP(H|Ft) has the Föllmer-

Schweizer decomposition (4) Ht = H0 +
∫ t
0
αsdXs +Ls.

Here L is orthogonal only to the martingale component M,

of the semimartingale decomposition of the process X=M+A.

Also, L ∈M2(P) and since Q∗ preserves the orthogonality,

we have 〈L,X〉 = 0, i.e. L is orthogonal also to X. There-
fore, this is the Kunita-Watanabe decomposition of H under

Q∗. Of course, if H is square-integrable under Q∗ then the

composition will anyway exist.

With this we have seen that, if the contingent claim can be

decomposed as in (4) and if the measureQ∗ does exist, (4) ac-

tually will represent the Kunita-Watanabe decomposition un-

der Q∗. Once we conclude this, we can proceed as in the first

case, and find the optimal strategy. This gives the connection

between the two decompositions and aslo solves the problem

of finding the optimal strategy.
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