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ABSTRACT 

Protein molecules are very important in the living organisms, 
since they are involved in many processes in the organisms. 
The knowledge of their functions is crucial for designing new 
drugs. There are various experimental methods for 
determining their functions, but they are very complex, so the 
number of known protein structures with undetermined 
functions is growing too fast. Therefore, one of the main 
research directions in bioinformatics community is 
investigating new computational methods for determining the 
protein functions. In this research paper, we present a two-
step fuzzy pattern tree based method for predicting the 
binding sites of the proteins. Further, this method could be 
incorporated in a framework for protein function annotation. 
The binding sites of the proteins are the amino acid residues 
where interactions between protein structures occur, while 
their features determine the functions that the proteins have in 
these interactions. In the first step of our method, we extract 
the most important features of the amino acids of the protein 
molecules. In the second step, using the amino acids’ features 
we induce fuzzy pattern trees that would be used to classify 
the amino acids as binding or non-binding sites. We present 
some experimental results of the evaluation of the fuzzy 
pattern trees based method. 

I. INTRODUCTION 

Protein molecules are involved in many processes in the 
living organisms, so they are very important compounds in 
the organisms. The knowledge of protein functions is 
essential for designing new drugs, better crops and synthetic 
biochemical. There are many experimental methods for 
determining the protein functions. However, these methods 
are very expensive and too complex. As a consequence of 
this, there are many protein molecules with known structures 
that are not functionally annotated yet. Thus, there is an 
evident need of development of computational methods for 
determining protein functions. 

In the literature, there are various methods for annotating 
protein structures, and they consider different information 
about the protein molecules. One group of methods examines 
the structural and sequence homology of the protein 
molecules [1]. Nevertheless, these methods are able to 
discover only a global similarity of the protein structures, 
while proteins with similar local similarity and even 
dissimilar global similarity could still share common 
functions. Other group of methods [2] annotates protein 
molecules by analysing the protein-protein interaction 
networks. However, these methods require a priori knowledge 
about the proteins that interact with a given query protein, 
whereas the acquisition of this knowledge is very expensive. 
Third group of methods examines the conservation of the 
proteins’ sequences and structures [3], which could be 

determined by multiple-alignment of the proteins’ sequences 
and structures. Fourth group of methods annotates the protein 
structures by examining the features of the protein binding 
sites [4]. Protein binding sites are the amino acids where 
interactions between the proteins occur. Molecular biologists 
manually annotate the protein structures in similar manner, so 
this group of methods is the most relevant one. For that 
reason, in this research paper we focus on predicting the 
protein binding sites. 

The protein binding sites could be predicted by considering 
different features of the amino acids, like Accessible Surface 
Area (ASA) [5], depth index (DPX) [6], protrusion index 
(CX) [7], hydrophobicity [8], and other physico-chemical and 
geometrical features. There is no single feature that 
completely distinguishes the protein binding and non-binding 
sites, so in the protein binding sites prediction several features 
should be considered. 

There are various methods for predicting the protein 
binding sites [9, 10, 11, 12, 13]. However, they are sensitive 
to small changes in the data (the amino acids’ features in this 
case) obtained due to the protein evolution. To overcome this, 
we use the fuzzy theory and induce fuzzy pattern trees for 
predicting the protein binding sites. Inspired by the classical 
decision trees, there are several studies on fuzzy decision 
trees (FDTs). In [14, 15], different methods for inducing 
FDTs are presented, while [16] and [17] present some 
optimizations of FDTs. The fuzzy decision trees are widely 
studied in [18], and their advantages and disadvantages over 
classical decision trees are presented. However, FDTs use 
only a single fuzzy aggregation operator, while in fuzzy 
pattern trees (FPTs) [19] induction different fuzzy 
aggregation operators could be used at the same time. 
Therefore, in this research we induce FPTs. 

In this research paper, we present a two-step fuzzy pattern 
tree based method for predicting protein binding sites. In the 
first step, we extract the most relevant features of the amino 
acids of the proteins. Then, in the second step we induce 
fuzzy pattern trees using the extracted amino acids’ features. 
The induced fuzzy pattern trees would be used to classify the 
amino acids as binding or non-binding sites. We present some 
experimental results of the evaluation of the method. 

In section 2, our method is presented. Section 3 provides 
some experimental results of the evaluation of the method, 
while section 4 concludes the paper and gives some directions 
for further improvements. 

II. OUR FUZZY PATTERN TREE BASED METHOD 

In this paper we present a method for detecting protein 
binding sites. Our method contains two steps. In the first step, 
we extract the most relevant features of the amino acids of the 
protein molecules. In the second step, we induce fuzzy pattern 
trees that would be used to classify the amino acid residues as 
binding or non-binding sites. 
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A. First step – Extraction of the most relevant features of 

the amino acid residues 

In this step, we extract the following amino acids’ features: 
accessible surface area, depth index, protrusion index and 
hydrophobicity. These features are most commonly found in 
the literature as the most relevant features for predicting the 
protein binding sites. Therefore, in this step we focus only on 
these features. 

The accessible surface area (ASA) is one of the most 
important characteristic of the amino acids regarding their 
preferences to be involved in interactions with other proteins. 
ASA is first described in 1971 by Lee and Richards [20]. In 
the literature, it is commonly calculated using the rolling ball 
algorithm [5]. In this algorithm, a rolling ‘probe’ with some 
predefined radius is used, and it is rolled around the inspected 
protein. In this research we use a rolling ‘probe’ with radius 
of 1.4 Å, which is same as the radius of the water molecule. 
This value is most commonly used in the literature. Amino 
acids contain several atoms which are folded in a particular 
way in the 3D space. For each atom, the accessible surface is 
calculated as the surface area of the atom that can get in 
contact with the rolling ‘probe’. Finally, the ASA of a given 
amino acid is calculated as a sum of the ASA values of the 
atoms that constitute the amino acid. 

Many amino acids which are part of the protein molecule 
are deeply in its interior, and they could not be reached by the 
amino acids of the interacting proteins. Therefore, they could 
not be binding sites. In order to avoid unnecessary predictions 
about these amino acids, first we estimate which amino acids 
of a given protein are on its surface. This estimation is made 
based on the previously calculated values for the accessible 
surface area of each amino acid. Namely, according to [21] if 
the fraction of the surface area of a given amino acids that 
could be reached by the rolling ‘probe’ is equal or greater 
than 5%, then we consider that amino acid as a surface 
residue. Otherwise, the amino acid is considered as a deeply 
buried residue. In this estimation we use the values for the 
total surface area of the amino acids given in [21]. In the 
second step of our method, we take into account only the 
surface amino acids, because the amino acids located in the 
protein interior could not be binding sites. 

Another amino acids’ feature which is also widely used for 
protein binding sites prediction is the depth index (DPX) [6]. 
For each of the atoms of the amino acid, we calculate its 
depth index, which is the distance between the atom and its 
closest solvent accessible atom (atom with ASA > 0). Then, 
we calculate the depth index of the amino acid as an average 
of the depth indices of all its atoms. 

Next, we extract the protrusion index (CX) [7] of the 
protein amino acids. For each of the non-hydrogen atoms, we 
calculate the number of heavy atoms within a sphere with 
some predefined radius. According to [7], we set this radius to 
10 Å. In order to calculate the occupied volume in the sphere 
Vint, we multiply the previously calculated number of heavy 
atoms in the sphere by the mean volume of the atoms (20.1 
Å). Then, Vext is calculated as the remaining volume of the 
sphere, while the protrusion index of the atom is calculated as 
CX=Vext/Vint [7]. In this way, the non-hydrogen atoms which 

are surrounded by many heavy atoms within a given radius 
would have low protrusion index, while the non-hydrogen 
atoms surrounded by few heavy atoms would have large 
protrusion index. Finally, the protrusion index of a given 
amino acid is calculated as an average of the protrusion 
indices of its non-hydrogen atoms. 

The fourth amino acids’ feature that we consider in this 
research is hydrophobicity. This feature is related with the 
hydrophobic effect. Namely, hydrophobic amino acids are 
more commonly found in the protein interior, while 
hydrophilic amino acids are more likely located towards the 
protein surface. In the literature, several scales for amino 
acids’ hydrophobicity can be found. In our research, we use 
the scale proposed by Kyte and Doolittle [8], which is the 
most commonly used scale. 

B. Second step – Inducing fuzzy pattern trees 

In this step, we induce fuzzy pattern trees (FPTs) [19] for 
predicting the binding sites of the protein molecules. In this 
research, for inducing fuzzy pattern trees we use the method 
given in [19]. For each class (classes of binding and non-
binding sites in our case), a separate tree is induced. In the 
test phase, a given query amino acid residue is presented to 
the tree for each class, and it is classified in the class for 
which the highest similarity is achieved. 

The induction of fuzzy pattern trees starts with 
fuzzification of the data set. We use the fuzzy membership 
functions (FMFs) introduced by Zadeh [22], which are 
straight-line FMFs. They are simple, and in many cases can 
lead to models with high prediction accuracy. However, 
according to Zadeh [22], the convex membership functions 
can significantly improve the prediction power of the models. 
Therefore, in this research we also use the Gaussian FMF. In 
the fuzzification, the fuzzy set is labelled with fuzzy terms. In 
this research we use four amino acids’ features, so if the 
number of FMFs per attribute (N) is set to 5, in the process of 
inducing tree for a given class we obtain 20 primitive trees 
(trees at level 0). The primitive trees for a given class can be 
used for classification in that class based on the membership 
value of a single fuzzy term. For each primitive tree we 
calculate the similarity between the membership values the 
corresponding fuzzy term for an amino acids’ feature and the 
membership values of a given fuzzy term for the class 
attribute. Then, we select the primitive tree that lead to 
highest similarity. In this research we use the standard RMSE 
similarity metric. 

Primitive trees could not gain a high prediction power, thus 
these trees are further aggregated using fuzzy aggregation 
operators. There are several types of fuzzy aggregation 
operators, and in this research we use only the basic 
operators, i.e. algebraic AND and OR. The main advantage of 
the fuzzy pattern trees (FPTs) [19] over the fuzzy decision 
trees (FDTs) [14] is that in the induction of FPTs different 
fuzzy aggregation operators could be used together at same 
time, thus providing models with higher prediction power. 

Using fuzzy aggregation operator, we build the trees at 
level 1 by aggregating the primitive tree with highest 
similarity and the other primitive trees from level 0. In this 
way, if the number of primitive trees is 20 the number of trees 
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at level 1 would be 19. Again, among the trees from level 1 
the tree with the highest similarity is chosen, and at level 2 it 
is aggregated with the other trees from level 0 and level 1 that 
do not have highest similarity among the trees from their 
levels. In this way at level 2 we obtain 37 trees. The same 
process is repeated for the other levels. In this way, we build 
the final tree bottom-up. 

In the process of inducing the final tree, the current tree 
with highest similarity could be aggregated with primitive 
trees (trees at level 0), or some more complex trees (trees 
from the other levels). In this way we can obtain two types of 
models: simple model (SM) and general model (GM). The 
main difference between the SMs and GMs is that in SMs the 
aggregation is done between the current tree with highest 
similarity and the primitive trees from level 0 excluding the 
primitive tree with highest similarity, while in GMs in the 
aggregation also the trees from the other levels are 
considered. In order to control the model complexity, the 
number of levels in the tree is limited to some predefined 
value. Namely, we limit the number of levels with parent 
nodes in the model trees. In this research we constrain the 
number of levels with parent nodes to 5. In section 3, besides 
the prediction power of the model, we will also inspect the 
model complexity that would be measured as a number of leaf 
nodes in the tree, which are actually the nodes labelled with 
fuzzy terms. 

III. EXPERIMENTAL RESULTS 

In this section, we present experimental results regarding the 
evaluation of our method. We use the BIND database [23], 
which contains knowledge about the protein binding sites that 
is obtained in experimental manner. In the research, we do not 
consider the entire BIND database, but we take into account 
only a representative protein chains. In this selection, we filter 
the protein chains thus each pair of protein chains has less 
than 40% sequence similarity using the selection criterion 
given in [24]. Next, from this representative data set we form 
the test set by selecting representative protein chains so that 
each pair of protein chains in the test set has less than 20% 
sequence similarity [24]. The rest of the protein chains in the 
representative data set are taken as training data. In this way, 
we obtained a training data set with 1062 protein chains, and 
a test set with 1858 protein chains. In the training data set, the 
total number of amino acid residues in the proteins is 365862, 
while in the test set this number equals 608434. After 
applying the filter for extracting the surface amino acids 
(amino acid residues with at least 5% accessible surface area), 
we obtain 284168 surface amino acids in the training data set, 
and 484637 surface amino acids in the test data set. 
According to the knowledge stored in the BIND database, 
from all surface amino acids in the training data set, only 
26889 are classified as binding sites, while in the test set only 
47501 amino acids are classified as binding sites. Since the 
non-binding sites class is dominant over the binding sites 
class, before the prediction models are induced, we first 
balance the training data set in order to prevent building 
models that would be biased towards the dominant class, the 
non-binding sites class in this case. This balancing is done in 

that way that the binding amino acids are taken into account 
several times until the distribution in the data become 
uniform. 

Since the balancing is not done on the test data set, we have 
to be careful in the decision which evaluation measure to use 
in the evaluation of the method. The measure should be 
appropriate for cases where some class is dominant, as it is in 
this case. We chose the Area under ROC curve (AUC-ROC) 
evaluation measure. In order to calculate this measure, first 
we have to calculate TP (true positives), TN (true negatives), 
FP (false positives) and FN (false negatives). Positive 
residues are the residues which are predicted as protein 
binding sites, while negative residues are the residues which 
are predicted as non-binding sites. TP is the number of the 
correctly predicted positive residues, TN is the number of 
correctly predicted negative residues, FP is the number of 
non-binding sites residues predicted as binding sites, while 
FN is the number of binding sites residues predicted as non-
binding sites. 

Next, we calculate the following measures: True Positive 
Rate (TPR) and True Negative Rate (TNR). TPR is calculated 
as TP/(TP+FN), while TNR is calculated as TN/(TN+FP). 
Finally, the Area under ROC curve (AUC-ROC) is calculated 
as AUC-ROC=TPR*TNR+TPR*(1-TNR)/2+TNR*(1-TPR)/2 
=(TPR+TNR)/2. This measure is the most appropriate 
measure, especially when the classes have very different 
number of examples, which is case in our research. AUC-
ROC obtains values between 0 and 1, where 1 corresponds to 
perfect prediction, and 0 corresponds to inverse prediction. 

Besides the models’ accuracy measured by TPR, TNR and 
AUC-ROC, we will also examine the model complexity. As it 
was described in Section 2, we obtain separate model for each 
class, and in the testing phase, the query amino acid is 
classified in the class for which the tree gives highest 
similarity. Since we have two classes (binding and non-
binding sites), we will obtain two fuzzy pattern trees in the 
model, therefore in the evaluation of the model complexity 
we will consider the total number of leaf nodes in both trees. 

In this research we present the analysis using simple 
models (SMs), where only primitive trees are aggregated with 
the current tree with highest similarity. However, we have 
also made some experiments using general models (GMs), 
but the results showed that even if we allow higher 
granulation to the tree by aggregating more complex trees, the 
tree still remains compact as in simple models. Therefore, the 
values for TPR, TNR, AUC-ROC and model complexity 
remain the same as in SMs. 

In Table 1, Table 2 and Table 3, we present the results of 
the evaluation of our method using different types of FMFs 
(triangular, trapezoidal and Gaussian) and different number of 
FMFs per feature (N = 2, 3, 4, 5 and 10). In this analysis we 
use RMSE similarity measure, algebraic AND and OR fuzzy 
aggregation operators, 0 low level trees (thus we induce only 
SMs), and the maximum number of levels with parent nodes 
in the tree (the number of levels with nodes associated with 
fuzzy aggregation operators) is set to 5. Using this 
experimental set up, the trees could have maximum 6 leaf 
nodes, and each model could have maximum 12 leaf nodes. 
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Table 1:  The results using different number (N) of triangular 
fuzzy membership functions per feature 

N TPR TNR AUC-
ROC 

Number 
of leaves 

2 0,3962 0,6262 0,5112 12 
3 0,4016 0,7113 0,5564 12 
4 0,6472 0,4815 0,5644 10 
5 0,2876 0,8042 0,5459 9 
10 0,5504 0,5550 0,5527 12 

 

Table 2:  The results using different number (N) of 
trapezoidal fuzzy membership functions per feature 

N TPR TNR AUC-
ROC 

Number 
of leaves 

2 0,4132 0,6290 0,5211 8 
3 0,2250 0,8522 0,5386 12 
4 0,4016 0,7120 0,5568 12 
5 0,5533 0,5766 0,5649 8 
10 0,3432 0,7635 0,5534 12 

 

Table 3:  The results using different number (N) of Gaussian 
fuzzy membership functions per feature 

N TPR TNR AUC-
ROC 

Number 
of leaves 

2 0,3859 0,6434 0,5147 12 
3 0,4016 0,7113 0,5564 12 
4 0,6472 0,4815 0,5644 10 
5 0,2204 0,8568 0,5386 11 
10 0,5539 0,5531 0,5535 12 

 
 

According to the results given in Table 1, we can conclude 
that for triangular FMF the most accurate model is obtained 
using 4 FMFs per attribute. Similarly, the most appropriate 
number of FMFs per attribute using trapezoidal and Gaussian 
FMFs is 5 and 4 respectively, see Table 2 and Table 3. From 
the results given in these tables, we can also conclude that 
when lower number of FMFs per attribute is used, the 
prediction power of the model is worse, and as this number 
increases towards 4 or 5, the predication power also increases. 
However, for too large number of FMFs per attribute, the 
induction of the models lasts significantly longer because the 
number of primitive trees increases, while the prediction 
power is still not improved. So the optimal number of FMFs 
per attribute is 4 for the triangular and Gaussian FMFs, and 5 
for the trapezoidal FMF. 

It is also interesting that the most accurate models obtained 
in this analysis are even with lower complexity than most of 
the other models. For example, for triangular FMF using 
N=4, the model has 10 leaf nodes, that is less than the number 
of leaf nodes using N = 2, 3 and 10. The same conclusion can 
be made for the other types of FMFs. According to the results 
given in previous tables, we can conclude that the most 
accurate model obtained using 5 trapezoidal FMFs per feature 
achieves AUC-ROC=0.5649, and has only 8 leaf nodes. 

However, in this research we used only the most basic 
types of FMFs. Also other convex FMFs like bell and log-
normal could be used. According to the similarity measure, 
we used the most basic measure, i.e. RMSE. Further, we can 
apply some other more sophisticated measures in order to 
improve the method. Regarding fuzzy aggregation operators, 
in this research we used only the algebraic AND and OR 
operators. Besides them, we can also incorporate other fuzzy 
aggregation operators that could also improve the prediction 
power of our method. 

IV. CONCLUSION 

In this paper, we presented a fuzzy pattern trees based method 
for predicting the protein binding sites. The method performs 
in two steps. In the first step, the most relevant features of the 
amino acid residues of the protein structure were extracted. 
Later, in the second step, these features were used for 
inducing fuzzy pattern trees for classifying the amino acid 
residues as binding or non-binding sites. 

In the evaluation of our method we used the BIND 
database, which contains experimentally obtained knowledge 
about the protein binding sites. We examined tree different 
types of membership functions, i.e. triangular, trapezoidal and 
Gaussian. For triangular FMF the most accurate model is 
obtained using N = 4 FMFs per attribute. Similarly, the most 
appropriate number of FMFs per attribute using trapezoidal 
and Gaussian FMFs is 5 and 4 respectively. The results 
showed that when lower number of FMFs per attribute is 
used, the accuracy of the model is lower, while for too large 
number of FMFs per attribute the induction process lasts 
longer and the predication power is still not increased. The 
optimal number of FMFs per attribute is 4 for the triangular 
and Gaussian FMFs, and 5 for the trapezoidal FMF. We also 
noticed that generally the models with higher prediction 
power have lower complexity. The most accurate model 
obtained in this research achieved AUC-ROC = 0.5649, and 
lowest complexity (8 leaf nodes). 

We identified several directions for further improvement of 
our method. First, regarding the types of the FMFs, in this 
research we used only the basic FMFs, so furthermore some 
other convex FMFs can be used. For measuring the similarity, 
we used the most basic measure, RMSE, so we expect that 
using other similarity measure we can improve the method. 
Although in this research we used the fuzzy pattern trees 
which against fuzzy decision trees allow simultaneous usage 
of different fuzzy aggregation operators, we still used only the 
most basic fuzzy aggregation operators, i.e. algebraic AND 
and OR. Further, we plan to improve the method by 
incorporating other more sophisticated fuzzy aggregation 
operators. 
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