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ABSTRACT

Most protein function prediction methods that have been
proposed, are based on sequence or structure protein
similarity and do not take into consideration the semantic
similarity extracted from protein knowledge databases such as
Gene Ontology. In this paper we present an approach for
protein function prediction using semantic similarity metrics
and the whole network topology of a protein interaction
network by using a “semantic driven” random walk with
restart. Different semantic similarity metrics are explored and
future results should show the relevance of different semantic
similarity metrics on protein function prediction using
random walk with restart. To achieve the final goal of protein
function prediction, the best semantic similarity metric should
be used.

I.  INTRODUCTION

Today, most of the methods for determining protein function
by protein similarity are based on protein sequence or
structure. However, the big drawback of these methods for
protein similarity is that structure or sequence similarity is not
directly related to function, since proteins with significant
structure or sequence similarity can have different functions.
Furthermore, proteins with different ancestors
significant sequence similarity can have the same function,
due to evolution.

and no

One of the most important challenges of molecular
biology is finding a method for extracting protein function
and protein similarity knowledge, consisted in the great
amount of protein and genome data in well-known protein
databases. An important breakthrough in protein annotation is
the creation of the Gene Ontology (GO) [1], the most famous
bio-ontology that is a structured and controlled vocabulary for
describing gene and protein products. The Gene Ontology
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defines a set of terms to which any given protein may be
annotated and is structured as a directed acyclic graph (DAG).
Therefore, proteins can be compared according to the Gene
Ontology.

This type of comparison is called semantic similarity
(SS), and it is based on the structure of the bio-ontology and
the relations between its terms, focusing on the semantic
similarity between the terms themselves. Generally, semantic
similarity is a specific type of similarity that gives meaning
similarity between two concepts in an ontology. This type of
similarity is the subject of research in artificial intelligence,
cognitive sciences, psychology, natural language processing
etc.

Most semantic similarity metrics are firstly defined for
WordNet (an English vocabulary database) [2], and
afterwards used for protein semantic similarity. Protein
semantic similarity is independent of homology and can help
overcome some of the issues of sequence and structure
similarity-based approaches. However, it is still not clear
which is the best way to calculate semantic similarity
considering the current bio-ontologies, but several metrics
have been proposed to calculate protein semantic similarity in
the context of the Gene Ontology (GO) [3],[10].

A protein interaction network (PIN) consists of nodes
representing proteins, and edges representing interactions
between proteins. Such networks are stochastic as edges are
weighted with the probability of interaction. There is more
information in a PIN compared to sequence or structure alone.
A network provides a global view of the context of each
gene/protein. Hence, our computational function prediction is
characterized by the use of a protein’s interaction context
within the network to predict its functions. The main idea
behind our function prediction technique is that function
inference using only local network analysis but without the
examination of global patterns is not general enough to cover
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all possible annotation trends that emerge in a PIN. Therefore
we use Random Walks to extract affinity neighborhoods
which take into account the whole network topology. We
additionally alter this by incorporating semantic similarity
within the random walks and making the whole prediction
semantic driven.

The aim of this paper is to present our work in progress
for evaluating the metrics and presenting a new system for
protein function prediction with the use of semantic similarity
and random walk. For a given protein the system can
determine similar proteins based on functional similarity, and
we should see impact of semantic similarity metrics on
determining protein function.

In section 2 we present a systematic analysis and an
overview of the existing semantic similarity metrics that will
be used, while section 3 will give the proposed system
architecture for protein function prediction based on the
semantic similarity metrics and the whole network topology
using the semantic driven random walk with restart.

II. OVERVIEW OF SEMANTIC SIMILARITY METRICS

Several approaches are available to quantify semantic
similarity between terms or annotated entities in an ontology
represented as a DAG such as GO. There are essentially two
types of methods for comparing terms in a graph-structured
ontology such as GO: node-based, in which the main data
sources are the nodes and their properties; and edge-based,
which use the edges and their types as the data source.

A. Node-based metrics

Node-based approaches rely on comparing the properties of
the terms involved, which can be related to the terms
themselves, their ancestors, or their descendants. One concept
commonly used in these approaches is information content
(IC), which gives a measure how specific and informative a
term is. The IC of a term ¢ can be quantified as the negative
log likelihood - log p(c), where p(c) is the probability of
occurrence of ¢ in a specific knowledgebase, being normally
estimated by its frequency of annotation. Alternatively, the IC
can also be calculated from the number of children a term has
in the GO structure, although this approach is less commonly
used.

The concept of IC can be applied to the common
ancestors two terms have, to quantify the information they
share and thus measure their semantic similarity. There are
two main approaches for doing this: the most informative
common ancestor (MICA), in which only the common
ancestor with the highest IC is considered [4]; and the disjoint
common ancestors (DCA), in which all disjoint common

106

ancestors (the common ancestors that do not subsume any
other common ancestor) are considered [9].

Approaches based on IC are less sensitive to the issues of
variable semantic distance and variable node density than
edge-based metrics [4], because the IC gives a metric of a
term's specificity that is independent of its depth in the
ontology (the IC of a term is dependent on its children but not
on its parents). The use of the IC also makes sense from a
probabilistic point of view: it is more probable (and less
meaningful) that two gene products share a commonly used
term than an uncommonly used term.

Other node-based approaches include looking at the
number of shared annotations, that is, the number of proteins
annotated with both terms, computing the number of shared
ancestors across the GO structure, and using other types of
information such as node depth and node link density.

The most common semantic similarity measures used
with GO have been Resnik's, Lin's, and Jiang and Conrath's,
which are node-based metrics relying on IC [4],[5],[6]. They
were originally developed for the WordNet, and then applied
to GO. Resnik measures similarity between two terms as
simply the IC of their most informative common ancestor
(MICA):

M

simg,(¢1,¢5) = IC(Cppey)

While this metric is effective in determining the information
shared by two terms, it does not consider how distant the
terms are from their common ancestor. To take that distance
into account, Lin's and Jiang and Conrath's metrics relate the
IC of the MICA to the IC of the terms being compared:

2*IC(Chpcq)
1C(c;)+1C(c,)
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However, being relative metrics, Sim;;, and sim - are

displaced from the graph. This means that these metrics are
proportional to the IC differences between the terms and their
common ancestor, independently of the absolute IC of the
ancestor.

To overcome this limitation, in [8] a relevance similarity
metric is proposed, which is based on Lin's metric, but uses
the probability of annotation of the MICA as a weighting
factor to provide graph placement.

“)

simge; (¢1,¢y) = simy;, (¢;,¢,) * (1= p(cy))



The 9™ Conference for Informatics and Information Technology (CIIT 2012)

A constraint all of these metrics share is that they look only
at a single common ancestor (the MICA) despite the fact that
GO terms can have several DCA. To avoid this, the GraSM
approach proposed in [9], can be applied to any of the metrics
previously described, and where the IC of the MICA is
replaced by the average IC of all DCA.

B.  Edge-based metrics

Edge-based approaches are based mainly on counting the
number of edges in the graph path between two terms. The
most common technique is the distance, that selects either the
shortest path or the average of all paths, when more than one
path exists. This technique gives a metric of the distance
between two terms, which can be easily converted into a
similarity metric. The common path technique calculates the
similarity directly by the length of the path from the lowest
common ancestor of the two terms to the root node.

While these approaches are intuitive, they are based on
two assumptions in bio-ontologies: (1) nodes and edges are
uniformly distributed, and (2) edges at the same level in the
ontology correspond to the same semantic distance between
terms. However, terms at the same depth do not necessarily
have the same specificity, and edges at the same level do not
necessarily represent the same semantic distance, so the
issues caused by the mentioned assumptions are not solved by
proposed methods.

Within the edge-based approaches, Pekar and Staab
proposed a metric based on the length of the longest path
between two terms' lowest common ancestor and the root
(maximum common ancestor depth), and on the length of the
longest path between each of the terms and that common
ancestor [7]. It is given by the expression

o(c,,root)
5(ca s VOOt) + 5(01 > ca) + 5(02 »Cy )

Simpg (€),C5) =

)

where d(cy,¢,) is the length in number of edges of the longest
distance between term ¢; and term c,.

There are other proposed edge-based metrics in [11], [12],
based on a maximum common ancestor depth metric, but
weighted each edge to reflect depth, introducing a distance to
the nearest leaf node and the distance to the lowest common
ancestor to take term specificity into account, etc.

C. Hybrid metric

Hybrid metric in which each edge is given a weight according
to the type of relationship was developed in [13]. For a given
term c¢; and its ancestor c,, the semantic contribution of ¢, to
c1, is defined as the product of all edge weights in the “best”
path from ¢, to c;, where the “best” path is the one that
maximizes the product. Semantic similarity between two

terms is then calculated by summing the semantic
contributions of all common ancestors to each of the terms
and dividing by the total semantic contribution of each term's
ancestors to that term.

III. PROTEIN FUNCTION PREDICTION SYSTEM ARCHITECTURE
AND SEMANTIC RANDOM WALK WITH RESTART

Our approach divides function prediction into two steps:
extraction of neighbourhood profile, and prediction based on
the computed neighbourhood (Figure 1) [14]. We summarize
the functional network context of a target protein in the
neighbourhood extraction step. We compute the steady state
distribution of a Random Walk with Restarts (RWR) from the
protein. The steady state is then transformed into a functional
profile. In the second step, we employ a prediction method for
the function of a target protein based on its neighbourhood
profile.

We summarize a protein’s neighborhood by computing
the steady state distribution of a Random Walk with Restarts
(RWR). We simulate the trajectory of a random walker that
starts from the target protein and moves to its neighbors with
a probability proportional to the weight of each connecting
edge. We keep the random walker close to the original node
in order to explore its local neighborhood, by allowing
transitions to the original node with a probability of ¢, the
restart probability.
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Figure 1: Function prediction process: extraction of
neighbourhood profile, and prediction based on the computed
neighbourhood

Let G = (V;E) be the graph representing a protein-protein
interaction network, where V is the set of nodes (proteins),
and E is the set of weighted undirected edges, where the
weight shows the probability of interaction (or functional
association) between protein pairs. We define the proximity
of a node v to a start node s, py(v), as the steady state
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probability that a random walk starting at node s will end at
node v.

Random walk method simulates a random walker that
starts on a source node, s (or a set of source nodes
simultaneously). At every time tick, the walker chooses
randomly among the available edges (based on edge weights),
or goes back to node s with probability c¢. The restart
probability ¢ enforces a restriction on how far we want the
random walker to get away from the start node s. In other
words, if ¢ is close to 1, the affinity vector reflects the local
structure around s, and as ¢ gets close to 0, a more global
view is observed.

The probability p,(v)”, describes the probability of
finding the random walker at node v at time 7. The steady
state probability py(v) gives a measure of proximity to node s,
and can be computed efficiently using iterative matrix
operations. Figure 2. shows the iterative algorithm, which
provably converges. The number of iterations to converge is
closely related to the restart probability c¢. As ¢ gets smaller
the diameter of the observed neighborhood increases, thus the
number of iterations to converge gets larger. The convergence

check requires the L;-norm between consecutive ;S(V)S to
be less than a small threshold, e.g., 102,
A possible interpretation of the neighbourhood profile is

an affinity vector of the target node to all other nodes based
solely on the network structure.

Input: the interaction network G = (V;E);
a start node s;

restart probability c;

Output: the proximity vector ;S(V) ;

>
Let , (v) be the restart vector with 0 for all its entries

except a 1 for the entry denoted by node s;

Let A be the column normalized adjacency matrix defined
by E (adjacency semantic similarity matrix);

e D -
Initialize p (V) = rs(V)s
. -
while ( () has not converged):

- - -
p )y =-0A, () te, (V)

Figure 2: The iterative algorithm to compute the proximity of
all the nodes in the graph to a given start node s
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We enrich our method and make it semantic driven by
including the semantic similarity between the proteins within
the step of neighbourhood extraction. Namely, in the
algorithm shown on Figure 2. instead of the column
normalized adjacency matrix we use the column normalized

adjacency semantic similarity matrix S. Each element Si of S
is computed by summing and then normalizing the value of

the adjacency matrix element % and the semantic similarity
score between proteins i and j. We argue that by using the
semantic driven random walk the prediction results will show
improvement over the pure topology driven approach.

After extracting the neighborhood profile we set up a
strategy for annotating the query protein with the adequate
functions according to the functions of the proteins in his
neighborhood. The simplest and most intuitive approach
would be that each function is ranked by its frequency of
appearance as an annotation for the proteins in the
neighborhood. This rank is calculated by (6) and is then
normalized in the range from 0 to 1.

fO)jeF = Z Zij
ieK (6)

where F is the set of functions present in the cluster K, and

{1, if protein i from K has function j from F
Zij=

0, otherwise

(7

In our proposed approach the previously explained
Resnik’s, Lin’s, JC’s, Rel, GraSM, and Pecar and Staab, and
the hybrid metric will be used in the normalized adjacency
semantic similarity matrix, and therefore, evaluated with the
random walk protein function prediction algorithm. Expected
results will show that semantic “driven” random walk with
restart improves the general non-semantic approach.
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