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ABSTRACT

The goal of our research is to evaluate the general methods

of finding solution of a system of differential equations. In

this paper we present an improved parallelization approach of

the two step parallel genetic algorithm approach that produces

an analytical solution of the system. The evaluation of the

algorithm reveals its capability to solve non-trivial systems in

very small number of generations. In order to find the best

solution, and due to the fact that the simulations are com-

putational intensive, we use parallel grid genetic algorithms.

Using the gLite based Grid, we propose a grid genetic solution

that uses large number of computational nodes, that archives

excellent performance. This research will be the basis on our

goal of solving more complex research problems based around

the Schrodingers equation.

I. INRODUCTION

Almost any problem in all fields of science are expressed

in terms of ordinary differential equations (ODE’s), partial

differential equations (PDE’s) or more generally as a system

of ordinary or partial differential equations (SODE or SPDE).

For that reason many methods have been proposed for solving

ODE’s and PDE’s, such as Runge Kutta, Predictor - Corrector

[1], radial basis functions [2] and feedforward neural networks

[3]. Also several methods based on genetic programming

have also been proposed [4], [5]. The technique of genetic

algorithms (GA) is an optimization process based on the

evolution of a large number of candidate solutions through

genetic operations such as replication, crossover and mutation

[6].

Our research focuses on developing an efficient method

based on genetic algorithms for finding an approximate an-

alytical solution of a SODE. In this paper we propose a novel

method based on two step genetic algorithm for solving SODE.

This feature of two step genetic algorithms, dramatically

improves the optimization process. We further investigate its

parallel implementation using Parallel GA.

The rest of this article is organized as follows: in section

II we describe the chromosome function representation, in

section III we describe in detail the new algorithm and its

implementation, in section IV we provide details about the

paralelization of the algorithm, V presents several experiments

and in section VI we give our conclusions and ideas for further

work.

II. FUNCTION REPRESENTATION AND EVALUATION

Search for the solution of system of ordinary differen-

tial equations using genetic algorithms requires an adequate

representation of the candidate solution. Since the solution

of a SODE is a set of functions, we need a chromosome

that specifies a single and thus a set of functions. Computer

representation of mathematical functions can be found im

many different problems. The solution mainly lies in the fact

that any set of correctly formed mathematical functions are

based on a context-free grammar. This is the reason why the

usual approach for representation or verification of a well

formed mathematical function is either a push-down automate

(or just a stack), a sequence of context-free rules, or a function

tree.

In [5] they choose the approach from Grammatical Evo-

lution for representation of the chromosome. Grammar Evo-

lution is an evolutionary approach to automatic program

generation, which evolves strings of binary values, and uses

a BNF grammar to map those strings into programs. This

mapping process involves transforming each binary individual

into a string of integer values, and using those values to

choose transformations from the given grammar. Even though

this approach has good research background, in our opinion

it is too complex and inefficient, due to the fact that the

chromosomes can suffer from the ”Ripple Effect” [7].

On the other hand in [4] the author opts for Revers

Polish Notation for representation of the chromosomes. This

approach gives the advantage of easy functional evaluation

and function tree reconstruction. We find Polish Notation to

be more adequate for function representation since it enables

easier implementation of crossover function that we propose.

A. Candidate solution

For the construction of the functions, elements of the candi-

date solution of the SODE, we define a grammar G=V,Σ,R,S
for the function representation. The set of non-terminals is

fixed to V = S. The set of terminals Σ contains the building

blocks of the candidate solutions. In our current experiments

we chose

Σ =Variable∪Constants∪Functions, (1)

where the set Variables = {x}, the set Constants =
{

c j| j ∈ {1..J}
}

that contains the placeholders for the con-

stants that will appear in the solution, and the set of all
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accepted functions Functions =
⋃

k

{

fk,l |l ∈ {1..Lk}
}

where k

represents the arity. The set of rules is shown in equation 2.

R =
{

S→ x,S→ c j,S→ f1,lS,S→ f2,lSS,S→ f3,lSSS, ...
}

.
(2)

In our experiments we used the following sets and values as

basis for solving the systems: number of constants J=10 and

Functions = {sin,cos,exp, log,+,− ,∗,/}.

The chromosomes that represent the candidate solution for

the SODE contain:

• one dynamic array per solution function representing a

stack that holds the polish notation of the function

• one array for holding the values of the constants that

appear in the system

• computed fitness value

Unlike the chromosomes that appear in Grammatical Evo-

lution [7], [5], where chromosomes keep a lot of recess genes

and their lenght is of fixed, we choose to keep the chro-

mosomes length dynamic and containing only the functional

elements.

B. Fitness function

The evaluation of the fitness of the candidate solution needs

to estimate the amount of difference with the correct solution.

Naturally, a good estimation of the fitness is to calculate the

integral of the difference between the two functions (candidate

and solution), or even better, an integral of the square differ-

ence between the two functions. The fitness values are always

positive, with the best fitness value 0.

In our experiments we simplify the fitness by calculating

an approximation of the integral of the square difference by

calculating a sum of square differences on an equidistant

points. Following is a detailed description of fitness function

evaluation.

Lets assume that we want to solve system of differential

equations 3, where x is the differentiating variable and we

assume that functions are ki differentiable on the interval [a,b].
In order to find a solution, we need to define initial conditions

shown in equation 4.
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We start the evaluation of fitness function by choos-

ing N equidistant points (xi) on the interval [a,b], (x0 =
a, x1, . . . , xN−1 = b). Since the candidate solution contains n

functions (stored as stacks) we will refer to these functions

as M1, ...,Mn. The evaluation of the candidate functions is

by simulating the execution of Mi(xi) using an additional

stack. Once we finish the evaluation of function points, we

estimate the values of the derivatives M
(k)
j (xi) by using the

Central Difference Approximation and Ridders interpolation

[8]. Computed values are used to evaluate the functions square

differenece E using the equations 5. In order to give more

emphasis on the initial conditions, we compute the difference

from the initial condition and the candidate solution and

multiply it using a emphasis factor λ . The computation of this

part and the complete fitness function is shown in equations

6 and 7.

E (M j) = ∑
N−1
l=0 ( f j(xl , M1(xl),

M
(1)
1 (xl), . . . ,M

(k1)
1 (xl),

M
(1)
2 (xl), . . . ,M

(k2)
2 (xl), . . . ,

M
(1)
n (xl), . . . ,M

(kn)
n (xl))

2,
E = ∑

n
j=1 E(M j)

(5)

P(M j) = λ (M j (a)− y ja)
2, ∀ j = 1, . . .n

P(M) = ∑
n
j=1 P(M j)

(6)

u = E +P (7)

III. GENETIC ALGORITHM IMPLEMENTATION

In this section we will present the two level genetic al-

gorithm that we use to find the approximative analytical

solution of the system of differential equations. The two

levels are based on the construction of the chromosomes

that represent the candidate solutions for the system. The

top level optimization focuses on the function structure. This

means that the focus on this level are the different candidate

solutions, each representing a completely different function

set. On the other hand, the bottom level optimization focuses

on the optimization of the constants that are introduced in

the chromosomes. On this level we focus on each candidate

solution, and try to find optimal values of the constants for

achieving as optimal as possible fitness values.
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Having this, out approach is, for each generation of the

genetic algorithm, first to run the bottom optimization on the

entire population, and once we have optimal constants for all

chromosomes, to start the top level optimization.

Following are the principles and implementation decisions

of the genetic algorithm optimization. We will start from the

top and proceed to the bottom level of optimization.

A. Initial population

The proper generation of an initial population of chromo-

somes is crucial for the success of the genetic algorithms.

In our approach, we choose to build the initial population by

randomly selecting rules from the chosen grammar. We use the

George Marsaglia’s KISS random generator built into the GNU

Fortran and in each step, we first select which category of rule

we will use on the first non-terminal character. By category

we meen either S → x, S → c j, S → f1,l and S → f2,l , since

we have only unary and binary functions. Once a category is

chosen, we again randolmy choose a rule from that category,

and apply the rule. The approach using categories is better than

using a single random number to choose from uncategorzed

rules, because if there are many constants, or many binary

functions, the probability of choosing a terminating character

(contant) might be much bigger than choosing a function, and

the rule S→ x will be chosen with very low probability. This

will result with very nested or very simple functions with many

constants.

B. Selection

The initial population is the basis of the optimization.

Each generation of the algorithm starts with a selection of

the population, in order to decide which chromosomes will

survive to reproduce and mutate. The selection algorithm that

we used is a variant of the tournament selection with two

turns, quarterfinals and semifinals and at the end obtaining the

finalists (reproduction set). In each turn we select a random

subset of chromosomes and choose the winner that proceeds

in the next turn.

C. Crossingover

Once the finalists are selected, we proceed with the repro-

duction steps using the following crossingover algorithm. The

crossingoever between the chromozomes is on the level of

separate functions, i.e. the first function of one chromosome

exchanges material with all function of the other chromosome.

this results with n2 children from two chromosomes. For the

crossing over between two functions, our goal is to select a

subfunction of both functions (subtrees of the function trees),

and switch the subfunctions. This process is depicted in Figure

1.

The subfunction selection process is implemented by first

random selection of the top of the subfunction (random

number represenets the index in the array that holds the prefix

function tree). Then we itterate towards the end of the array

and try to find the closing position of the subfunction. This
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Fig. 1. Cutting and exchange of the subfunctions in the process of
crossingover between two functions

approach is possible since each subree is a continous segment

in the array using the postfix (Polish) notation.

This approach for crossingover is much more natural when

crossing two functions. A similar approach can be found in [4]

where the authors search for a binary operator, and exchange

the operator together with one of the subtrees. We find our

solution to be more general. On the other hand, when using a

Grammar Evolution approach [5] one cannot simply select a

closed form subfunction. This results into additional step that

need to fix the broken parts of the function.

D. Mutation

After the crossingover generates the new population we

proceed to mutation operation. we select a relatively small

number of random chromosomes, where we randomly select

an element and mutate it with another elemnet from the same

set (constant with constant or variable, unary function with

unary function, etc.).

E. Constant Optimization

Since we introduced constants into the building process of

the candidate functions, we need to define their values prior

to solution evaluation. In similar approaches [5] predefine the

values of the constants to several integer numbers. On the

other hand, in [4] they define constant on every element in

the function tree (a more general approach). They continue by

optimizing the values of the constants by using perturbation.

In our approach, we use another genetic algorithm optimiza-

tion in order to select the best values of the constants. The

chromosomes represent an array of double precision values,

randomly initialized. We implemented the heuristic crossover

[9]. We start by selecting two chromosomes from a sorted

population (by fitness). The first parrent u is chosen from

the upper part (better fitness), and the second v from lower

c©2012 Faculty of Computer Science and Engineering

122



The 9th Conference for Informatics and Information Technology (CIIT 2012)

part of the sorted population. The offspring is generated by

first selecting a random parameter α ∈ [0,1] and generate the

offspring genes using the equations 8. All chromosomes enter

the selection process, and the result is a new population where

the upper part becomes lower part, and the newly generated

chromosomes are located in the upper part of the population.

The mutation of the chromosomes is executed by selecting

three chromosomes u,v,w and by selecting a single gene uu,

vv and ww. Then we compute the new value of uu =
vv+ww

2
.

uinew = α (ui− vi)+ui, for i = 1, 2, . . . , n

vinew = ui, for i = 1, 2, . . . , n
(8)

The benefits of constant optimization are shown in section

IV. There we analyze fitness value of best chromosome in

population, when we exclude and include constant optimiza-

tion. When we exclude constant optimization, the value of the

best chromosome converges very slowly, needs large number

of generations, with large number of chromosomes, for finding

an approximate solution, the approximate solution is very long

function etc. Those disadvantages are being solved when we

include constant optimization.

IV. PARALLELIZATION

One of the main characteristics of genetic algorithms and

genetic programming as techniques for implementation of

evolutionary paradigms is their exceptional ability to be par-

allelized. This comes from the fact that the individuals can

be evaluated in parallel as their performance rarely, if ever,

affects that of other individuals. There are numerous ways for

paralelization of genetic algorithms, but here we will consider

the following two techniques:

• Island GA: The population is divided on several subpop-

ulations - islands, each subpopulation is a population on

its own and is developed on a separate processor. After

a certain number of generations, all subpopulations are

gathered together into a single population to get mixed,

after which they are resent to the processors.

• Paralelization of the fitness function: The most used

operation in the evolutionary algorithms is an evaluation

of the fitness value of each of the chromosomes. The

fitness value is evaluated during selection, after crossover,

after mutation. Therefore, this operation takes most of

the processor time. There are different techniques for

paralelization of the fitness function depending on its

shape.

We used the Message Passing Interface (MPI) standard for

building the parallel evolutionary algorithm. As it was ex-

plained above, the current population consists of chromosomes

which contain as many stacks as there are equations in the

system that is being solved, and each of the stacks that denotes

a postfix representation of the function is represented by a

stack with a variable size. As a result of the dynamic size of

the arrays and due to the fact that MPI cannot deal with arrays

with variable size, it is impossible to divide the population on

smaller islands to be sent to the corresponding processors. This

reason led us to the implementation of the second technique

for paralelization of the fitness function.

From the definition of the fitness function given with the

equations (5)-(7), it is clear that the interval [a,b] is searched

for the value of the candidate functions. This interval is divided

into equidistant points with step ε , resulting with N = b−a
ε

+1

points at most. If there are n processors available, then this

interval is divided on n disjoint and neighbouring intervals

with at most N
n

points each. After the discretization of the

initial interval into n subintervals, each of the subintervals is

sent to the corresponding processor, i.e. the i-th subinterval

is sent to the i-th processor. This implies a paralelization of

(5). When the i-th subinterval is assigned to the i-th processor,

the processor needs to calculate the sum defined in (5), which

means that the value of the candidate functions which are part

of the chromosome needs to be evaluated in each of the points.

The values obtained by the evaluation of the functions in these

points should be replaced in all equations of the system and

afterwards the sum of the squares of the obtained results needs

to be computed. This gives us an information about how close

we are to the exact solution in the subinterval.

Hence, we first divide the interval into subintervals and

then each processor computes in parallel the abovementioned

value for each of the subintervals. However, there are serial

calculations for each point of that interval, i.e. the stacks

(expression trees) are traversed with the purpose to evaluate the

value of the candidate functions in the current point. In order

to avoid this anomaly, we introduce new structure representing

a stack array which contains as many stacks as there are

points in the subinterval, i.e. the i-th stack of this array stores

the development of the i-th point in the evaluation of the

candidate function. The number of stack arrays is equal to

the number of candidate functions. This enables us to evaluate

the values of the candidate functions in all the points of the

subinterval with one traversal of the stacks. At the end of the

evaluation, the stacks contain one element which stores the

value of the candidate function in the corresponding point.

Since each of the processors has as many stack arrays as there

are candidate functions, at each processor the value of the

candidate functions in each point of the corresponding interval

is stored. We repeat the procedure described above and at the

end we collect the results from all processors, eventuating in

the parallel evaluation of the fitness value in the interval [a,b].

V. EVALUATON

In order to evaluate the proposed two step genetic algorithm

for SODE, we evaluated its performance, conversation speed

and quality of solution. We tested the algorithm on several sys-

tems of differential equations with known analytical solution

and show results for one example. Wolfram Mathematica’s

DSolve can not find results for this example. The results from

the experiments are very promissing and we beleive that this

approach can be used very successfully, especially its parallel

implementation, therefore we measure speedup of the parallel

algorithm. The process of optimization was run using a replica-

tion rate of 15% (i.e. cross over probability 85%) and mutation
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Fig. 2. Solution convergence of the SODE equation 9 by generations

rate of 5%, λ = 100, over a population of 100 chromosomes.

In the tournament selection algoritm we choose the number

of quaterfinalists to be 25, semifinalists to 5 and the number

of finalists that are generated is (cross over probability) ∗
(number o f chromosomes in the generation). In genetic

algorithm for optimization of the constants values we set

population size to 200 and number of generation to 100. When

we exclude constant optimization we use 10 constant with

value {0,1,2, ...,9}.

A. Example

The system we tested was the system show in equation 9

with initial conditions 10. The solution of this system is y1 =
sinx

ex and y2 = ex. In our search for a solution, we chose the

interval x∈ [0, 1.5] with step 0,005 (301 discrete points in the

interval). The correct solution was found in the 8th generation.

The obtained solution of the SODE equation 9 is shown in

Figure 2.

{

y′1 =
cosx −sinx

y2

y′2 = y1y2 + ex− sinx
(9)

y1 (0) = 0,y2 (0) = 1 (10)

When we exclude constant optimization we find approxi-

mate solution in the 100th generation with fitness value of

3.012 10−3. After the 55th generation convergence is very

slow.

In order to show the benefit of parallelization we measure

the speed up in ratio to the time of running of serial algorithm.

The result is shown in Figure 3. it can be concluded that for

12 processors the speed up is around 5 times faster.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a very successfully implemen-

tation of a parallel genetic algorithm for solving SODE. Our

two step optimization enables bigger flexibility of the solutions

and makes the process of optimization very successful even
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Fig. 3. Speed Up of parallelization with different number of processors

with very small number of generations. The new optimiza-

tion achieves substantial parallel speedup comparing with the

original solution.

Even though we achieved great result, we will continue

to optimize the algorithm and its implementation, mainly by

using hybrid parallel implementation on HPC clusters. We

want to further investigate different initial population gener-

ation approaches, where we won’t use uniform distribution

to select the subset of rules. Another interesting issue is the

fact that in the currently generated candidate solutions we

rarely see elements such as polynomials. We believe that this

problem is related to the approach for building the initial set

of chromosomes and that these elements will give much better

candidate solutions.
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