
The 9th Conference for Informatics and Information Technology (CIIT 2012)

©2012 Faculty of Computer Science and Engineering

MACHINE LEARNING ALGORITHMS

FOR PLAYER SATISFACTION OPTIMIZATION

Nenad Bojkovski Ana Madevska Bogdanova

I Sioux Taurus d.o.o

Skopje, Macedonia

Faculty of Computer Science

and Engineering

Skopje, Macedonia

ABSTRACT

There are several state-of-the-art algorithms currently used

for optimization of various aspects of games affecting player

satisfaction. In this paper we give a survey of these methods

in order to present the platform of research for modeling

player satisfaction for a generic player. We focus on the

systems for optimization of overall player experience possible

applicable on more genres of games. The algorithms are used

for optimization of Non-Player Characters (NPC) behavior,

Content Generation, Dynamic Difficulty Adjustment (DDA)

etc.

I. INTRODUCTION

There are a great number of games on the market today.

A lot of them are unsuccessful, few of them are profitable and

even fewer are successful. Game developers spends huge

amount of resources developing games hoping for return of

investment.

One of the main determinants of successfulness of the

games, which, indeed, is in the focus of the developers and

scientists today, is the emotions they bring to the player.

Games must be fun, enjoyable, satisfactory and entertaining

in order to attract players to buy them.

Fun in games, player satisfaction, player enjoyment and

entertainment will be used interchangeably in this paper as a

class of positive player experiences or player’s features of

play related to the level of satisfaction of game perceived by

players [6].

Fun is an affective state, subjective to each player, thus

very hard to achieve. It should be quantified to be measured,

but quantifying fun is not an easy task.

There are several models for representing positive player

experience (fun). Some of them are very general, providing

high-level guidance for game design – GameFlow [7], based

on the well-known concept of “flow” [8]. Others, like EVE,

MDA [9] use probabilistic models of measuring fun.

Yannakakis and Hallam have developed a heuristic model for

entertainment modeling. They are using it extensively in their

research of augmenting entertainment in predator-prey games

like Pac-Man [10].

Using these models we can mine players’ data (game

metrics) [11] while they are playing the game. Such data can

be analyzed further and assumption could be made about the

level of fun of the game.

Quantifying fun is only the first step towards the optimal

player experience. Having numerical data about fun in game,

machine learning can be applied for adaptation of the game to

optimize the overall player experience.

Recently most exploited concepts from machine learning

applied for optimization of player satisfaction are

reinforcement learning methods such as Neuro-evolution as

ANN adaptation mechanism, adapting ANN’s weights as well

as the ANN’s topology; Q-Learning as a type of temporal

difference reinforcement learning; Hamlet System a DDA

system for opponent difficulty adjustment in combat-based

games. Particle Swarm Optimization is yet another

mechanism for adapting ANNs. There are very few references

in the literature of using this mechanism in player satisfaction

modeling. Considering its performance in robotics [12], it is

very good candidate to overcome genetic algorithms in

performance on adapting ANNs for player experience

optimization.

Two aspects of application of machine learning in games

are known: Out-Game Learning (OGL) – Game learns before

being shipped to market, and In-Game Learning (IGL) –

Machine learning is part of the gameplay, game learns

permanently while it is played [1].

In this paper reinforcement learning and probabilistic

IGL methods are reviewed. Particle Swarm Optimization [5]

is proposed as on-line adaptation method for Artificial Neural

Networks which possibly performs better than Neuro-

Evolution [5].

Our focus is on the systems for optimization of overall

player experience possible applicable on more genres of

games. Further research in this area would be creation of an

optimizer and evaluation of its performance against other

algorithms. Initially, it is sufficient to evaluate the algorithm

on one or several aspects of the player experience like DDA

or NPC behavior, and then gradually to be expanded to

overall player experience.

II. FUN IN GAMES

Games and other software products are essentially different.

Usually consumer purchase non-game software with some

purpose, to perform a necessary task, but a game is bought on

voluntary basis purely for its entertaining value. If the game is

not fun to play, it will not sell on the marketplace [13]. To

ensure that a particular game will sell profitably, special care

is required on its entertaining value.

Yannakakis [6] classifies approaches of capturing level of

player satisfaction into qualitative and quantitative.

Qualitative approaches include features and criteria that

contribute to engaging and immersive player experience

derived from the psychological studies. Quantitative

approaches include studies for quantifying the qualitative

criteria while the players interact with game.

144

The 9th Conference for Informatics and Information Technology (CIIT 2012)

Quantitative criteria are the ones we are the most

concerned of because they provide numerical data for further

optimization of player experience. Cognitive and affective

methods are used for eliciting the quantitative data. With

cognitive methods, game metrics are measured observing

player – game interactions, while affective methods are

concerned of psychological behavior of the player while the

game is played. To capture these affective data hardware

devices are attached on the players measuring hart rate,

galvanic skin response, jaw electromyography, respiration,

cardiovascular measures etc.

Having these data, now machine learning can be applied

for optimization of player experience.

III. MACHINE LEARNING ALGORITHMS

Various algorithms and techniques from artificial intelligence

are today employed in games providing solutions for a range

of game dependent problems. However, most of those

solutions are static, predefined, without abilities to adjust on-

line, during game play. This causes certain game features to

be predictable which could make game boring.

Machine learning provides techniques and algorithms

which can improve the game dynamics and adaptability.

Machine learning algorithm could be used both out-game

(off-line) and in – game (on-line). Out-game learning suffers

from the same issues of predictability make the game quickly

to become boring. For us, more challenging is the in-game

learning and it will be the main concern of this paper.

Considering environment in which machine learning

could be applied, three approaches are possible: supervised

learning – input and correct output are available,

reinforcement learning – feedback is available but not an

output and unsupervised learning – no hint is available about

correct outputs [14].

Supervised learning requires training data where input

and corresponding output data are known, which, indeed, is

not possible in games especially for on-line learning.

Quantified fun is the output data which is different for

different profiles of players, thus, supervised learning is not

an appropriate kind of learning technique for optimization of

player satisfaction. Reinforcement and unsupervised learning

admits uncertainty in the learning environment which

corresponds to game play environment. Unsupervised

learning learns to discover the statistical regularities in data

providing pattern classifications [15]. It is used for

classification problems which are not the ones we are

targeting. Therefore, reinforcement learning is the most

appropriate learning method for our optimization problem

because it requires continuous interaction with the

environment in order to maximize the learning reward.

Most popular reinforcement learning algorithms will be

outlined below.

A. Neuro-evolution

Neuro-evolution is a method for modifying Artificial

Neural Network weights, topologies and ensembles in order

to learn specific task. Evolutionary computing is used to

search the problem space for maximization of fitness function

that measures performance in the task. Neuro-evolution is a

highly general method allowing learning without explicit

targets. It can also be used as a policy search method for

reinforcement learning problems [19].

Artificial Neural Networks are used for supervised

learning problem resolution. Namely, they get trained with

known input-output training data, acquiring knowledge for

predicting output for future, often unfamiliar input data.

Introducing evolutionary computation as a mechanism for

evolving weights, topologies and ensembles of ANNs their

application area expands in the field of reinforcement

learning.

Basically, neuro-evolution has main advantages compared

to others reinforcement learning methods allowing continuous

state and action spaces. Therefore, neuro-evolution is widely

used today in various areas of application and different level

of uncertainty in the problems they solved. Thus, application

of neuro-evolution can be found in robotics, vehicle control

and, of course, gaming.

Miikkulainen et al. has developed Neuro-Evolution of

Augmenting Topologies (NEAT) algorithm and its real-time

variant (rtNEAT), which is in our focus, evolving

increasingly complex ANN [18].

1) rtNEAT

Real-time Neuro-Evolution of Augmenting Topologies

(rtNEAT) is the neuro evolutionary algorithm which evolves

on-line ANNs to maximize their fitness for adaptation of team

of agents in the battle against opponent team. It has originally

been created for NERO game [18] where two teams of agents

have to be trained for a battle. Better trained team wins the

battle.

The algorithm starts with a minimal structure of the ANNs

and adds nodes and connections incrementally as ANNs

evolves towards the solution. The mutation operation is

performed by adding or removing node or connection, while

the crossover can be performed in many ways, but usually it

is a structural combination matching genes from both parents.

rtNEAT uses explicit fitness sharing [18] where the

organisms in the same species must share the fitness to their

niche. This way dominance of one single species is avoided.

The algorithm performs iterating over next six steps:

1. Calculate the adjusted fitness of all current

individuals in the population.

2. Remove the agent with the worst adjusted fitness

from the population. The agent which is removed has

to be alive sufficiently long, because removing of

small species which has just appeared should be

avoided.

3. Re-estimate the average fitness for all species.

 !"

The 9th Conference for Informatics and Information Technology (CIIT 2012)

4. Choose the parent species to create new offspring.

5. Reassign all agents to species.

6. Place the new agent in the world.

The adjusted fitness function if for the organism i is

calculated according the following equation:

n

j

i

i

jish

f
f

1

)),((

 (1)

Where if is the fitness function of the organism i, is its

distance to every other organism j in the population.

)),((jish is the sharing function.)),((jish is 0 when the

distance),(ji is above some threshold t , and 1 otherwise.

This way,
n

j

jish
1

)),((reduces to the number of the

organisms in the same species as organism i.

The threshold t restrains the species. Namely, if the

organism’s distance of the randomly selected organism in the

species is less than t , the organism is placed into this

species.

In the NERO project rtNEAT has successfully been used

for game agent learning, thus improving the intelligence of

the agents. But, opponent game agent behavior does not

represent the overall player experiences. However, the

rtNEAT can possibly be good optimization solution for other

aspects of player satisfaction, such: generating of the

environment, adaptation of game narrative, game rules, DDA,

etc.

2) Neuro-evolutionary preference learning

Neuro-evolutionary preference learning is neuro-evolutionary

machine learning algorithm developed by Yannakakis et al

[2]. In essence, it is a simplified neuro-evolutionary algorithm

with partially evolving topology. Namely, the Artificial

Neural Network which is evolving has predefined number

layers: input, output and two hidden layers. The number of

the neurons in each layer evolves and dictates the ANN’s

topology. Quantitative player models are generated collecting

data from the game using game metrics and level design

features. Based on those models, preference learning neuro-

evolution is possible providing dynamic content generation.

The algorithm is applied on platform-based game where

adaptive level design is performed [2]. Considering the results

gathered for the research, the algorithm appears to be good

enough for optimization of level design parameters for player

experience in platform-based games.

B. Q-Learning

Q-Learning is the reinforcement learning algorithm based on

Temporal Difference Learning [16]. It makes an agent to

learn which action he should take when the environment he

acts is in given state. Q-learning problem model consists of

agent, set of states and set of actions per state. Therefore,

function Q exist which calculates the quality of state-action

combination - Q(s,a) where s is the state and a is an action

performed in state s. For each action taken at certain state the

reward is given to the agent to indicate whether the action

performed is good or bad. The rewards are used by agent to

learn what to do [17].

The core of the Q-learning algorithm is the following

formula:

)),(),(max)((),(),(asQasQsRasQasQ
a

 (2)

This formula is executed every time when the agent takes an

action a, which make the environment to change the state

from state s to s’

to which the newly acquired information will override the old

information. R(s) is the reward given to the agent in the state s

unt factor which

determines the importance of future rewards.

Essentially, what the algorithm does is incrementing the

Q(s,a) - quality value for the state s when the action a is

performed which leads to state s’ in which action a’ exists

such that the best possible Q(s’,a’) - quality value for the state

s’ is the next time-step and its sum with the reward in the

state s is greater than the actual Q(s,a) - quality value of the

state s when action a is performed. This means that the better

estimate Q(s,a) for the quality value of the state s when action

a is performed is found, so the previous one is overridden

with the new one.

Q-learning has various applications in different machine

learning problems, though it is used in games. Miikkulainen

et al. use Q-learning for learning agents in OpenNERO Game

platform for AI research [18]. Similar as with rtNEAT, Q-

learning is used for training OpenNERO agents to defeat the

opponents in the battle. Unfortunately, they have discovered

that Q-learning performs worse than the rtNEAT algorithm.

Besides, the Q-learning algorithm has a major issue. The

number of the states in the environment and the actions

performed over those states has to be finite. Moreover, if

there are an increasing number of states or actions then there

will be great number of quality equation that needs be

calculated which, of course, will degrade the overall

performance of the game.

C. Hamlet

Hamlet is Dynamic Difficulty Adjustment System

embedded as a set of libraries in the Half Life game engine.

146

The 9th Conference for Informatics and Information Technology (CIIT 2012)

This system adjusts game difficulty on-line for player to be

kept in the “flow channel” [8], away from the states where the

game is too challenging or too easy. The system includes

functions for monitoring game statistics according to pre-

defined metrics, defining and executing adjustment actions

and policies, displaying data and system control settings and

generating play session traces [4].

As a player progress through the game, Hamlet monitors

its performance from the statistical metrics collected from the

game and estimates player’s future state. If the predicted state

is undesirable the systems adjust game settings as necessary.

Concretely, this system is intended for combat based

games, like First Person Shooters (FPS) as Half Life is. It

evaluates the player damage and inventory shortfall

probabilities. After a sequence of measurements, the system

intervenes reducing enemy difficulty if needed, or placing

inventory item in a level or pack more inventory items on

vanquishing foes.

Hamlet appears to be great DDA system for combat

based game genre, working transparently from the player

adapting game according to player skills. But, this systems

targets only a part from the overall player experience, namely

game difficulty, and also a specific game genre.

However, our focus is on the systems for optimization of

overall player experience possible applicable on more genres

of games.

D. Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is built on idea of

swarming intelligence manifested by certain kind of animals

such as birds, fish and ants. PSO is a population based

stochastic optimization technique. PSO shares many

similarities with evolutionary computation techniques such as

Genetic Algorithms. The system is initialized with a

population of random solutions and searches of optima by

upgrading generations. Unlike Genetic Algorithms, PSO has

no evolution operators such crossover and mutation. Potential

PSO solutions are called particles and they fly around the

problem space following the current optimum particles [19].

Co-evolution versions of PSO have effectively been used for

evolving agents for playing board games, game theory

strategies and multi-objective function optimization [5].

Essentially, the algorithm uses objective or fitness function

which maps the input - candidate solution drawn from the

problem’s search or solution space into output – fitness of the

selected candidate solution. Each candidate solution is also

named as particle flying around the search space. The

objective of the PSO is to find the optimal solution for a

given task. This optimization basically is either maximization

or minimization of the fitness function.

Each particle maintains its position, composed of the

candidate solution and its fitness, and its velocity.

Additionally, it remembers the best fitness achieved thus far

during the operation of the algorithm, referred to as the

individual best fitness, and the candidate solution as

individual best candidate solution. Finally, the algorithm

maintains the best fitness achieved among the particles in

swarm, called global best fitness, and the candidate solution,

global best candidate solution [22].

The algorithm is performing in three steps:

1. Evaluate the fitness for all particles.

2. Update individual and global best fitnesses and

positions.

3. Update velocity and positions for all particles.

The first two steps are trivial, but the third one is more

complex. Namely, the velocity of each particle is evaluated

by the following equation:

])()([])()([)()1(22

^

11 txtgrctxtxrctwvtv iiiii
 (3)

i – is the index of the particle.)(txi is the position,)(tvi

is the velocity,)(
^

tx i is the individual best candidate solution

for the particle i at the time t.)(tg is global best candidate

solution at the time t. 21,, ccw are user supplied coefficients,

while the 21, rr are random values regenerated for each

velocity upgrade.

It can be noticed that particle velocity evaluation formula is

composed of three components:

1.)(twvi - inertia component, responsible for keeping

the particle moving in the same direction it was

originally heading.

2.])()([
^

11 txtxrc ii - cognitive component, the

memory of the particle, causing particle to return to

those locations in the search space where it has

experienced high individual fitness.

3.])()([22 txtgrc i – social component, causes

particle to move to the best region the swarm has

found so far.

When the velocity of each particle is evaluated, its position is

changed by applying the new particle velocity to its current

position as follows:

)1()()1(tvtxtx iii
 (4)

The algorithm loops through those steps until stopping

condition is met. The stopping condition could be the number

of iterations of the algorithm, predefined target fitness value

etc.

In the moment, there are no references in the literature of

using the PSO for player satisfaction optimization despite the

fact that they prove to be good adaptation mechanism for

Artificial Neural Networks. This is the main motivation of

future research in the field of application of PSO in player

satisfaction optimization.

 !"

The 9th Conference for Informatics and Information Technology (CIIT 2012)

IV. CONCLUSION

The algorithms outlined in this paper are powerful

mechanisms for solving machine learning problems in many

areas of science and industry. One of those areas is game

industry. As it is explained, Hamlet system has already been

used in commercial game title, while others are still in use

only for scientific purposes. However, only neuro-

evolutionary preference learning is applied for player

satisfaction optimization in predator-prey games like Pac-

man, while rtNEAT adapts game agent’s behavior and

Hamlet system adapts the game difficulty which, indeed, are

parts of overall player satisfaction optimization. Q-learning

has an application in NPC behavior modeling, but it has a

major disadvantage, the size of state space.

Particle swarm optimization is an optimization technique

that successfully is applied in various fields of AI, particularly

in computer vision, vehicle control and robotics. Inspired by

that effective usage of PSO, we believe that it could also

successfully be used in game industry for adaptation of the

ANNs to be able to achieve optimal player experience.

Further research in this area would be creation of PSO

optimizer and evaluation of its performance against other

algorithms. Initially, it is sufficient to evaluate the algorithm

on one or several aspects of the player experience like DDA

or NPC behavior, and then gradually to be expanded to

overall player experience. Namely, our intent is to develop

PSO algorithm which will evolve the weights, and later the

topologies of ANNs. Furthermore, the algorithm will be

applied on-line in game where its performance will be

measured. The results will be collected, analyzed and

compared. Based on the performance of our algorithm,

decisions will be made about further directions of the

research.

V. REFERENCES

[1] Kenneth O. Stanley, Bobby D. Bryant and Risto Miikkulainen, “Real-

Time Neuroevolution in the NERO Video Game,” IEEE Transactions

on Evolutionary Computation, vol. 9, no. 6, December 2005.

[2] Christopher Pedersen, Georgios N. Yannakakis and Julian Togelius,

“Modeling Player Experience for Content Creation,” IEEE Symposium

on Computational Intelligence and Games (CIG), 2010.

[3] Patrick Ulam, Joshua Jones and Ashok K. Goel, “Combining Model-

Based Meta-Reasoning and Reinforcement Learning for Adapting

Game-Playing Agents,” in Proceedings of the Fourth Artificial

Intelligence and Interactive Digital Entertainment Conference, October

22-24, 2008, Stanford, California, USA .

[4] Robin Hunicke and Vernell Chapman, “AI for Dynamic Difficulty

Adjustment in Games,” in Proceedings of the Challenges in Game AI

Workshop, Nineteenth National Conference on Artificial Intelligence,

2004.

[5] Leo H. Langenhoven, Geoff S. Nitschke, “Neuro-evolution versus

Particle Swarm Optimization for competitive co-evolution of pursuit-

evasion behaviours,” IEEE Congress on Evolutionary Computation

2010, pp. 1-8, September 2010.

[6] Georgios N. Yannakakis, “How to Model and Augment Player

Satisfaction: A Review,” In Proceedings of the 1st Workshop on Child ,

Computer and Interaction, ICMI'08, 2008.

[7] Penelope Sweetser and Peta Wyeth, “GameFlow: A model for

evaluating player enjoyment in games”, ACM Computers in

Entertainment, 2005.

[8] Mihaly Csikszentmihlyi, “Finding Flow: The Psychology of

Engagement With Everyday Life,” New York, New York, 1998..

[9] Jeffrey Peter Moffett, “Applying Casual Model to Dynamic Difficulty

Adjustment in Video Games”, Master Thesis, Worcester Polytechnic

Institute, May, 2010.

[10] Georgios N. Yannakakis and John Hallam, “Capturing Player

Enjoyment in Computer Games,” Advanced Intelligent Paradigms in

Computer Games, 2007.

[11] Mark J. Nelson, “Game metrics without players: Strategies for

understanding game artifacts,” In Proceedings of the 2011 AIIDE

Workshop on Artificial Intelligence in the Game Design Process, 2011,

pp. 14-18.

[12] J. Pugh and A. Martinoli, “Multi-robot learning with particle swarm

optimization,” In Proceeding of the International Conference on

Autonomous Agents and Multi-Agent Systems, pages 441–448,

Hakodate.

[13] Melissa A. Federoff, “Heuristics and Usability Guidelines for the

Creation and Evaluation of Fun in Video Games”, Indiana University,

Bloomington, 2002.

[14] John E. Laird and Michael van Lent , “Machine Learning for Computer

Games,” Game Developers Conference, March 10,2005.

[15] E. K. Burke and G. Kendall, “Search Methodologies: Introductory

Tutorials in Optimization and Decision Support Techniques,” Springer,

2005, pp. 341-344.

[16] Richard S. Sutton and Andrew G. Barto ,”Reinforcement Learning: An

Introduction ,” The MIT Press Cambridge, Massachusetts London,

England, 1998

[17] Christian Eder, “ Q-Learning: A Simple Reinforcement Learning

Algorithm Based On The Temporal Difference Approach [Internet].

Version 18. Knol. 2008 Oct 15. Available from:

http://knol.google.com/k/christian-eder/q-learning/xfqw1gyel5ga/3.

[18] Igor V. Karpov, John Sheblak and Risto Miikkulainen, “OpenNERO: a

Game Platform for AI Research and Education,” Department of

Computer Sciences, The University of Texas at Austin.

[19] Xiaohui Hu, “Particle Swarm Optimization,” [Internet]. Available from:

http://www.swarmintelligence.org/.

[20] Russell C. Eberhart, Yuhui Shi and James Kennedy, “Swarm

Intelligence,” Morgan Kaufmann Publishers, 2001.

[21] Risto Miikkulainen, “Neuroevolution,” Department of Computer

Sciences, The University of Texas at Austin.

[22] James Blondin, “Particle Swarm Optimization: A Tutorial,” September,

2009.

148

