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ABSTRACT

There are several state-of-the-art algorithms currently used 

for optimization of various aspects of games affecting player 

satisfaction. In this paper we give a survey of these methods 

in order to present the platform of research for modeling 

player satisfaction for a generic player. We focus on the 

systems for optimization of overall player experience possible 

applicable on more genres of games. The algorithms are used 

for optimization of Non-Player Characters (NPC) behavior, 

Content Generation, Dynamic Difficulty Adjustment (DDA) 

etc. 

I. INTRODUCTION

There are a great number of games on the market today. 

A lot of them are unsuccessful, few of them are profitable and 

even fewer are successful. Game developers spends huge 

amount of resources developing games hoping for return of 

investment. 

One of the main determinants of successfulness of the 

games, which, indeed, is in the focus of the developers and 

scientists today, is the emotions they bring to the player. 

Games must be fun, enjoyable, satisfactory and entertaining 

in order to attract players to buy them. 

Fun in games, player satisfaction, player enjoyment and 

entertainment will be used interchangeably in this paper as a 

class of positive player experiences or player’s features of 

play related to the level of satisfaction of game perceived by 

players [6].

Fun is an affective state, subjective to each player, thus 

very hard to achieve. It should be quantified to be measured, 

but quantifying fun is not an easy task. 

There are several models for representing positive player 

experience (fun). Some of them are very general, providing 

high-level guidance for game design – GameFlow [7], based 

on the well-known concept of “flow” [8]. Others, like EVE, 

MDA [9] use probabilistic models of measuring fun. 

Yannakakis and Hallam have developed a heuristic model for 

entertainment modeling. They are using it extensively in their 

research of augmenting entertainment in predator-prey games 

like Pac-Man [10]. 

Using these models we can mine players’ data (game 

metrics) [11] while they are playing the game. Such data can 

be analyzed further and assumption could be made about the 

level of fun of the game.  

Quantifying fun is only the first step towards the optimal 

player experience. Having numerical data about fun in game, 

machine learning can be applied for adaptation of the game to 

optimize the overall player experience. 

Recently most exploited concepts from machine learning 

applied for optimization of player satisfaction are 

reinforcement learning methods such as Neuro-evolution as 

ANN adaptation mechanism, adapting ANN’s weights as well 

as the ANN’s topology;  Q-Learning as a type of temporal 

difference reinforcement learning; Hamlet System a DDA 

system for opponent difficulty adjustment in combat-based 

games. Particle Swarm Optimization is yet another 

mechanism for adapting ANNs. There are very few references 

in the literature of using this mechanism in player satisfaction 

modeling. Considering its performance in robotics [12], it is 

very good candidate to overcome genetic algorithms in 

performance on adapting ANNs for player experience 

optimization. 

Two aspects of application of machine learning in games 

are known: Out-Game Learning (OGL) – Game learns before 

being shipped to market, and In-Game Learning (IGL) –

Machine learning is part of the gameplay, game learns 

permanently while it is played [1]. 

In this paper reinforcement learning and probabilistic 

IGL methods are reviewed. Particle Swarm Optimization [5] 

is proposed as on-line adaptation method for Artificial Neural 

Networks which possibly performs better than Neuro-

Evolution [5].

Our focus is on the systems for optimization of overall 

player experience possible applicable on more genres of 

games. Further research in this area would be creation of an

optimizer and evaluation of its performance against other 

algorithms. Initially, it is sufficient to evaluate the algorithm 

on one or several aspects of the player experience like DDA 

or NPC behavior, and then gradually to be expanded to 

overall player experience.

II. FUN IN GAMES

Games and other software products are essentially different. 

Usually consumer purchase non-game software with some 

purpose, to perform a necessary task, but a game is bought on 

voluntary basis purely for its entertaining value. If the game is 

not fun to play, it will not sell on the marketplace [13]. To 

ensure that a particular game will sell profitably, special care 

is required on its entertaining value. 

Yannakakis [6] classifies approaches of capturing level of 

player satisfaction into qualitative and quantitative. 

Qualitative approaches include features and criteria that 

contribute to engaging and immersive player experience 

derived from the psychological studies. Quantitative 

approaches include studies for quantifying the qualitative 

criteria while the players interact with game. 
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Quantitative criteria are the ones we are the most 

concerned of because they provide numerical data for further 

optimization of player experience.  Cognitive and affective 

methods are used for eliciting the quantitative data. With 

cognitive methods, game metrics are measured observing 

player – game interactions, while affective methods are 

concerned of psychological behavior of the player while the 

game is played. To capture these affective data hardware 

devices are attached on the players measuring hart rate, 

galvanic skin response, jaw electromyography, respiration, 

cardiovascular measures etc. 

Having these data, now machine learning can be applied 

for optimization of player experience.

III. MACHINE LEARNING ALGORITHMS

Various algorithms and techniques from artificial intelligence 

are today employed in games providing solutions for a range 

of game dependent problems. However, most of those 

solutions are static, predefined, without abilities to adjust on-

line, during game play. This causes certain game features to 

be predictable which could make game boring. 

Machine learning provides techniques and algorithms 

which can improve the game dynamics and adaptability. 

Machine learning algorithm could be used both out-game 

(off-line) and in – game (on-line). Out-game learning suffers 

from the same issues of predictability make the game quickly 

to become boring.  For us, more challenging is the in-game 

learning and it will be the main concern of this paper.

Considering environment in which machine learning 

could be applied, three approaches are possible: supervised 

learning – input and correct output are available, 

reinforcement learning – feedback is available but not an 

output and unsupervised learning – no hint is available about 

correct outputs [14].   

Supervised learning requires training data where input 

and corresponding output data are known, which, indeed, is 

not possible in games especially for on-line learning. 

Quantified fun is the output data which is different for 

different profiles of players, thus, supervised learning is not 

an appropriate kind of learning technique for optimization of 

player satisfaction. Reinforcement and unsupervised learning 

admits uncertainty in the learning environment which 

corresponds to game play environment. Unsupervised 

learning learns to discover the statistical regularities in data 

providing pattern classifications [15]. It is used for 

classification problems which are not the ones we are 

targeting. Therefore, reinforcement learning is the most 

appropriate learning method for our optimization problem 

because it requires continuous interaction with the 

environment in order to maximize the learning reward.  

Most popular reinforcement learning algorithms will be 

outlined below.

A. Neuro-evolution 

Neuro-evolution is a method for modifying Artificial 

Neural Network weights, topologies and ensembles in order 

to learn specific task. Evolutionary computing is used to 

search the problem space for maximization of fitness function 

that measures performance in the task. Neuro-evolution is a 

highly general method allowing learning without explicit 

targets. It can also be used as a policy search method for 

reinforcement learning problems [19].

Artificial Neural Networks are used for supervised 

learning problem resolution. Namely, they get trained with 

known input-output training data, acquiring knowledge for 

predicting output for future, often unfamiliar input data. 

Introducing evolutionary computation as a mechanism for 

evolving weights, topologies and ensembles of ANNs their 

application area expands in the field of reinforcement 

learning.  

Basically, neuro-evolution has main advantages compared 

to others reinforcement learning methods allowing continuous 

state and action spaces. Therefore, neuro-evolution is widely 

used today in various areas of application and different level 

of uncertainty in the problems they solved. Thus, application 

of neuro-evolution can be found in robotics, vehicle control 

and, of course, gaming.

Miikkulainen et al. has developed Neuro-Evolution of 

Augmenting Topologies (NEAT) algorithm and its real-time 

variant (rtNEAT), which is in our focus, evolving 

increasingly complex ANN [18].

1) rtNEAT

Real-time Neuro-Evolution of Augmenting Topologies 

(rtNEAT) is the neuro evolutionary algorithm which evolves 

on-line ANNs to maximize their fitness for adaptation of team 

of agents in the battle against opponent team. It has originally 

been created for NERO game [18] where two teams of agents 

have to be trained for a battle. Better trained team wins the 

battle.

The algorithm starts with a minimal structure of the ANNs 

and adds nodes and connections incrementally as ANNs 

evolves towards the solution. The mutation operation is 

performed by adding or removing node or connection, while 

the crossover can be performed in many ways, but usually it 

is a structural combination matching genes from both parents. 

rtNEAT uses explicit fitness sharing [18] where the 

organisms in the same species must share the fitness to their 

niche. This way dominance of one single species is avoided.  

The algorithm performs iterating over next six steps:

1. Calculate the adjusted fitness of all current 

individuals in the population.

2. Remove the agent with the worst adjusted fitness 

from the population. The agent which is removed has 

to be alive sufficiently long, because removing of 

small species which has just appeared should be 

avoided. 

3. Re-estimate the average fitness for all species.
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4. Choose the parent species to create new offspring.

5. Reassign all agents to species.

6. Place the new agent in the world.

The adjusted fitness function if for the organism i is 

calculated according the following equation:
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Where if is the fitness function of the organism i, is its 

distance to every other organism j in the population.
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organisms in the same species as organism i.

The threshold t restrains the species. Namely, if the

organism’s distance of the randomly selected organism in the 

species is less than t , the organism is placed into this 

species. 

In the NERO project rtNEAT has successfully been used 

for game agent learning, thus improving the intelligence of 

the agents. But, opponent game agent behavior does not

represent the overall player experiences. However, the 

rtNEAT can possibly be good optimization solution for other 

aspects of player satisfaction, such: generating of the 

environment, adaptation of game narrative, game rules, DDA, 

etc.           

  

2) Neuro-evolutionary preference learning

Neuro-evolutionary preference learning is neuro-evolutionary 

machine learning algorithm developed by Yannakakis et al 

[2]. In essence, it is a simplified neuro-evolutionary algorithm 

with partially evolving topology. Namely, the Artificial 

Neural Network which is evolving has predefined number 

layers: input, output and two hidden layers. The number of 

the neurons in each layer evolves and dictates the ANN’s 

topology. Quantitative player models are generated collecting 

data from the game using game metrics and level design 

features. Based on those models, preference learning neuro-

evolution is possible providing dynamic content generation. 

The algorithm is applied on platform-based game where 

adaptive level design is performed [2]. Considering the results 

gathered for the research, the algorithm appears to be good 

enough for optimization of level design parameters for player 

experience in platform-based games.

B. Q-Learning 

Q-Learning is the reinforcement learning algorithm based on 

Temporal Difference Learning [16]. It makes an agent to 

learn which action he should take when the environment he 

acts is in given state. Q-learning problem model consists of 

agent, set of states and set of actions per state. Therefore, 

function Q exist which calculates the quality of state-action 

combination - Q(s,a) where s is the state and a is an action 

performed in state s. For each action taken at certain state the 

reward is given to the agent to indicate whether the action 

performed is good or bad. The rewards are used by agent to 

learn what to do [17].

The core of the Q-learning algorithm is the following 

formula:

)),(),(max)((),(),( asQasQsRasQasQ
a

      (2) 

This formula is executed every time when the agent takes an 

action a, which make the environment to change the state 

from state s to s’

to which the newly acquired information will override the old 

information. R(s) is the reward given to the agent in the state s

unt factor which 

determines the importance of future rewards.  

Essentially, what the algorithm does is incrementing the 

Q(s,a) - quality value for the state s when the action a is 

performed which leads to state s’ in which action a’ exists 

such that the best possible Q(s’,a’) - quality value for the state 

s’ is the next time-step and its sum with the reward in the 

state s is greater than the actual Q(s,a) - quality value of the 

state s when action a is performed. This means that the better 

estimate Q(s,a) for the quality value of the state s when action 

a is performed is found, so the previous one is overridden 

with the new one.

Q-learning has various applications in different machine 

learning problems, though it is used in games. Miikkulainen

et al. use Q-learning for learning agents in OpenNERO Game 

platform for AI research [18]. Similar as with rtNEAT, Q-

learning is used for training OpenNERO agents to defeat the 

opponents in the battle. Unfortunately, they have discovered 

that Q-learning performs worse than the rtNEAT algorithm. 

Besides, the Q-learning algorithm has a major issue. The 

number of the states in the environment and the actions 

performed over those states has to be finite. Moreover, if 

there are an increasing number of states or actions then there 

will be great number of quality equation that needs be 

calculated which, of course, will degrade the overall

performance of the game. 

   

   

C. Hamlet 

Hamlet is Dynamic Difficulty Adjustment System 

embedded as a set of libraries in the Half Life game engine. 
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This system adjusts game difficulty on-line for player to be 

kept in the “flow channel” [8], away from the states where the 

game is too challenging or too easy. The system includes 

functions for monitoring game statistics according to pre-

defined metrics, defining and executing adjustment actions 

and policies, displaying data and system control settings and 

generating play session traces [4]. 

As a player progress through the game, Hamlet monitors 

its performance from the statistical metrics collected from the 

game and estimates player’s future state. If the predicted state 

is undesirable the systems adjust game settings as necessary.   

Concretely, this system is intended for combat based 

games, like First Person Shooters (FPS) as Half Life is. It 

evaluates the player damage and inventory shortfall 

probabilities. After a sequence of measurements, the system 

intervenes reducing enemy difficulty if needed, or placing 

inventory item in a level or pack more inventory items on 

vanquishing foes. 

Hamlet appears to be great DDA system for combat 

based game genre, working transparently from the player 

adapting game according to player skills. But, this systems 

targets only a part from the overall player experience, namely 

game difficulty, and also a specific game genre. 

However, our focus is on the systems for optimization of 

overall player experience possible applicable on more genres 

of games.

  

D. Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is built on idea of 

swarming intelligence manifested by certain kind of animals 

such as birds, fish and ants. PSO is a population based 

stochastic optimization technique. PSO shares many 

similarities with evolutionary computation techniques such as 

Genetic Algorithms. The system is initialized with a 

population of random solutions and searches of optima by 

upgrading generations. Unlike Genetic Algorithms, PSO has 

no evolution operators such crossover and mutation. Potential 

PSO solutions are called particles and they fly around the 

problem space following the current optimum particles [19].

Co-evolution versions of PSO have effectively been used for 

evolving agents for playing board games, game theory 

strategies and multi-objective function optimization [5].  

Essentially, the algorithm uses objective or fitness function 

which maps the input - candidate solution drawn from the 

problem’s search or solution space into output – fitness of the 

selected candidate solution. Each candidate solution is also 

named as particle flying around the search space.  The 

objective of the PSO is to find the optimal solution for a 

given task. This optimization basically is either maximization 

or minimization of the fitness function.

Each particle maintains its position, composed of the 

candidate solution and its fitness, and its velocity. 

Additionally, it remembers the best fitness achieved thus far 

during the operation of the algorithm, referred to as the 

individual best fitness, and the candidate solution as 

individual best candidate solution. Finally, the algorithm 

maintains the best fitness achieved among the particles in 

swarm, called global best fitness, and the candidate solution, 

global best candidate solution [22].

The algorithm is performing in three steps:

1. Evaluate the fitness for all particles.

2. Update individual and global best fitnesses and 

positions.

3. Update velocity and positions for all particles.

The first two steps are trivial, but the third one is more 

complex. Namely, the velocity of each particle is evaluated 

by the following equation:    

])()([])()([)()1( 22

^

11 txtgrctxtxrctwvtv iiiii
    (3)

i – is the index of the particle. )(txi is the position, )(tvi

is the velocity, )(
^

tx i is the individual best candidate solution 

for the particle i at the time t. )(tg is global best candidate 

solution at the time t. 21,, ccw are user supplied coefficients, 

while the 21, rr are random values regenerated for each 

velocity upgrade. 

It can be noticed that particle velocity evaluation formula is 

composed of three components:

1. )(twvi - inertia component, responsible for keeping 

the particle moving in the same direction it was 

originally heading.

2. ])()([
^

11 txtxrc ii  - cognitive component, the 

memory of the particle, causing particle to return to 

those locations in the search space where it has 

experienced high individual fitness.   

3. ])()([22 txtgrc i  – social component, causes 

particle to move to the best region the swarm has 

found so far.

When the velocity of each particle is evaluated, its position is 

changed by applying the new particle velocity to its current 

position as follows:

)1()()1( tvtxtx iii
       (4) 

The algorithm loops through those steps until stopping 

condition is met. The stopping condition could be the number 

of iterations of the algorithm, predefined target fitness value 

etc. 

In the moment, there are no references in the literature of 

using the PSO for player satisfaction optimization despite the 

fact that they prove to be good adaptation mechanism for 

Artificial Neural Networks. This is the main motivation of 

future research in the field of application of PSO in player 

satisfaction optimization.
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IV. CONCLUSION

The algorithms outlined in this paper are powerful 

mechanisms for solving machine learning problems in many 

areas of science and industry. One of those areas is game 

industry. As it is explained, Hamlet system has already been 

used in commercial game title, while others are still in use 

only for scientific purposes. However, only neuro-

evolutionary preference learning is applied for player 

satisfaction optimization in predator-prey games like Pac-

man, while rtNEAT adapts game agent’s behavior and 

Hamlet system adapts the game difficulty which, indeed, are 

parts of overall player satisfaction optimization. Q-learning 

has an application in NPC behavior modeling, but it has a 

major disadvantage, the size of state space.

Particle swarm optimization is an optimization technique 

that successfully is applied in various fields of AI, particularly 

in computer vision, vehicle control and robotics. Inspired by 

that effective usage of PSO, we believe that it could also 

successfully be used in game industry for adaptation of the 

ANNs to be able to achieve optimal player experience. 

Further research in this area would be creation of PSO 

optimizer and evaluation of its performance against other 

algorithms. Initially, it is sufficient to evaluate the algorithm 

on one or several aspects of the player experience like DDA 

or NPC behavior, and then gradually to be expanded to 

overall player experience. Namely, our intent is to develop 

PSO algorithm which will evolve the weights, and later the

topologies of ANNs. Furthermore, the algorithm will be 

applied on-line in game where its performance will be 

measured. The results will be collected, analyzed and 

compared. Based on the performance of our algorithm, 

decisions will be made about further directions of the 

research.   
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