
The 9th Conference for Informatics and Information Technology (CIIT 2012)

Message Transformation to Gain Maximum Web

Server Performance in Cloud Computing

Sasko Ristov

Ss. Cyril and Methodius University

Faculty of Information Sciences

and Computer Engineering

Skopje, Macedonia

Email: sashko.ristov@finki.ukim.mk

Marjan Gusev

Ss. Cyril and Methodius University

Faculty of Information Sciences

and Computer Engineering

Skopje, Macedonia

Email: marjan.gushev@finki.ukim.mk

Goran Velkoski

Ss. Cyril and Methodius University

Faculty of Information Sciences

and Computer Engineering

Skopje, Macedonia

Email: velkoski.goran@gmail.com

Abstract—On-premise server performance depends on several
parameters. Server’s hardware resources, operating system (OS)
and runtime environment are persistent during server and service
life cycle; they provide constant performance for even server
payload. This feature changes if the server migrates in a dynamic
multi-tenant cloud. The server’s hardware resources usually
are shared among several tenants which impacts server overall
performance.

In this paper we analyze what runtime environment and
OS achieves the best performance for web services in cloud
PaaS layer for peak loads, particularly when the increased load
happens due to huge number of small messages or by huge
message sizes. We propose a middleware strategy to survive the
peak loads of huge number of small messages and also a model
to transform huge messages into smaller chunks and send to the
server as separated sub messages.

Index Terms—Cloud Computing, Operating System, Perfor-
mance, Virtualization, Web Services, SOAP Messages

I. INTRODUCTION

Cloud computing is a paradigm that offers scalable and high

quality resources, redundancy, elasticity and multi-tenancy. It

is called as fifth generation of computing after Mainframe,

Personal Computer, Client-Server Computing, and Web [1].

The concept of cloud computing reduces customers’ cost.

The on-demand concepts ”rent whenever you need” and ”pay

when you rent” offers the customers to invest the money into

their business rather to invest in advance for underutilized ICT

equipment.

However, the overall cost is not always the key factor in

business manager decisions. Cloud computing provides many

benefits and detriments to business continuity. A comprehen-

sive analysis for business information system security in cloud

computing is given in [2]. Service unavailability for only

several hours or even minutes can be source of costs bigger

than those for IT equipment.

Implementing security often adds an overhead and outcomes

with complex cryptographic operations that always degrades

the service overall performance.

Faster web service response time is imperative for both the

clients and the providers. A lot of proposals and solutions exist

to speedup the web service response time. Algorithm trans-

formation can highly improve the web service performance.

Installing more hardware resources on web server is another

solution. Cloud computing should facilitate this issue. How-

ever, both solutions add additional cost to service providers.

The former costs concern additional software developer man

hours. The latter costs concern additional OPEX (operating

costs) for renting more instances of virtual machines or the

instances with more resources and in the most of the cases

additional system administrator man hours.

Our intention is to find a solution that will improve the

overall performance of web services with less additional costs,

or even without it if possible. The authors in [3] introduce

a middleware layer implementation between the clients and

the endpoint web service as a strategy to survive compute

peak loads in cloud computing. Their experiments prove

that although the middleware produces additional latency to

overall response time, this solution provides better web service

performance for compute intensive web services. This solution

reduces the costs for additional hardware only during the peaks

and also reduces the system administrator man hours since

it automatically starts and shut downs instances with needed

resources.

The middleware strategy benefits are also used in this

paper. Ristov in [4] determines the totally different web server

behavior and overall performance when web services are

hosted on different operating systems, but on the same web

server for the same input load. In this paper we analyze

the benefits of middleware layer implementation between the

clients and web services comparing the additional latency

that middleware produces with reduced response time when

the traffic is redirected on the server that provides better

performance for such a load.

The paper is organized as follows. Section II overviews

the installed cloud environment. We present the message

transformation algorithm and new solutions to survive peak

loads in Sections III and IV. The performance analysis is

discussed in Section V. We conclude our work in Section VI

and our plans for future work are presented in Section VII.

II. CLOUD TESTING ENVIRONMENT

The experiments are realized in cloud testing environment

using OpenStack Compute project Cactus [5]. It is deployed in

c©2012 Faculty of Computer Science and Engineering

The 9th Conference for Informatics and Information Technology (CIIT 2012) 

©2012 Faculty of Computer Science and Engineering 

 !!



The 9th Conference for Informatics and Information Technology (CIIT 2012)

Fig. 1. Cloud Testing Environment [6]

Fig. 2. Cloud Network [7]

dual node as depicted in Figure 1, i.e. two servers connected

with two networks.

Server1 is Controller Node that controls the network and

volumes, and schedules instances. Server2 is Compute Node

that runs the instances of virtual machines. Server1 has also

Compute service as a backup.

Eth0 is public network where the activated instances of

virtual machine communicate with the outside world. Eth1

network interfaces are a part of the private or service network

where the virtual machines communicate among each other.

Network and Port address translation is used to spare the IP

addresses, i.e. private IP addresses are used for a network on

Eth0 interfaces although it is public network.

A. The Infrastructure

Hardware Infrastructure consists of two servers. Server1

is HP Server ML110 G6 with 4GB RAM. Server2 is Dell

Optiplex 760 with 4GB RAM and Intel(R) Core(TM)2 Quad

CPU Q9400 @ 2.66GHz.

The network consists of public and bridged private network

as depicted in Figure 2. IP addresses of public pool are

dedicated to virtual machine instances.

B. The Platform

Linux Ubuntu Server 11.04 64 bit is installed on both

servers. One image of virtual machines is installed also with

Linux 11.04 and another image of virtual machines is installed

with Windows 2008 Server R2 Enterprise.

Apache Tomcat is installed as a runtime for web services

both on the servers and in the virtual machines.

Fig. 3. The client server model in the cloud

C. The Client

SoapUI [8] is used to load web services with different

message size and different number of concurrent messages.

III. THE MESSAGE TRANSFORMATION ALGORITHM

This Section presents the message transformation algorithm

that can gain better performance. It also presents which web

services can use this algorithm to gain better performance with

less resources.

A. Traditional Client-Server Model in the Cloud

Traditional client web service server model is depicted in

Figure 3. The arbitrary number of clients invoke in the same

time one or more web services hosted on a web server installed

in one instance of virtual machine in the cloud.

This solution is not prone to peak loads. Either web server

should be underutilized during the most of the time or there

will be nosedive drawback in the performance of the web ser-

vice and web server. The authors in [3] propose an extension of

this model for compute intensive algorithms to achieve better

performance in peak loads. We use this model and extend it

to gain even better performance with less resources.

B. New Client-Server Model in the Cloud with Middleware

and Message Transformation

The proposed message transformation algorithm with mid-

dleware is depicted in Figure 4. Instead of renting one instance

of virtual machine with more CPU and RAM resources at the

beginning, we propose to rent one web server instance with

minimum resources that cloud service provider offers and such

that will satisfy the required performance. A middleware layer

will be installed on this web server. It will receive all the

requests from the customers and will forward the requests to

the endpoint web service deployed in the same server. The

operating system and runtime environment will be selected to

provide the best performance for a nominal load as measured

during the process of learning.

IV. NEW SOLUTIONS FOR PEAK LOADS

Besides the existing instance of virtual machine we propose

a new solution that will rent additional server during the peak

loads from different images with different platforms according

peak load type. Peak load occurs when a high throughput is

sent to the server. The high throughput can be produced by

a huge number of concurrent messages or by huge messages,

c©2012 Faculty of Computer Science and Engineering

The 9th Conference for Informatics and Information Technology (CIIT 2012) 

156



The 9th Conference for Informatics and Information Technology (CIIT 2012)

Fig. 4. The Message Transformation Algorithm

or even both. We propose a solution for each scenario in the

following sections.

A. Peak load with huge number of concurrent messages

This scenario is more probable rather than the scenario in

Section IV-B. Increasing the total number of users can often

provide this peak. Even more, the peak is more weighty for

compute or memory intensive web services. E-testing or E-

voting are typical representatives of this scenario where a

huge majority of users in the same time will load the web

service. Only in short period of time the clients concurrently

are taking the exams or they vote. Thus the web service will

be overloaded with huge number of concurrent small sized

messages. This scenario utilizes the web server’s processor

rather than occupying the memory.

Nice solution for this scenario for compute intensive web

services is presented in [3], i.e. introducing a middleware layer

between the clients and endpoint web service. The middleware

starts and shuts down the instances if a peak load occurs.

In this paper we extend and even improve this solution.

If the load of the middleware server reaches its limit then

additional instance with web server will be started. Our new

idea is what type of virtual machine image should be started?

Ristov in [4] found that Microsoft Windows operating system

provides better performance than Linux Ubuntu operating sys-

tem for messages above 10KB, i.e. huge messages. Opposite,

Linux Ubuntu operating system provides better performance

than Microsoft Windows operating system for huge number

of concurrent messages and for small messages.

Therefore, we propose the middleware web server to be

installed with Linux server based operating system. Further

on, we extend the solution in two directions. That is, if the

number of concurrent messages increases but the messages

are small sized and the performance reaches its limits, then

the additional web server that should be instantiated should

be also installed with Linux as it performs better for huge

number of small sized messages. Otherwise, if the messages

are above 10K then additional server with Windows Server

based operating system should be instantiated.

B. Peak load with huge messages

This scenario does not depend directly on the total number

of users but depends on the message size and type that clients

send to the web service. Implementing web service security

standards always increases the original message size. The

authors in [9] determine the message overhead increment both

for XML Signature and XML Encryption. The size of signed

SOAP message with XML Signature is always greater than

the original message by a constant value regardless the size

of the original message. The size of encrypted SOAP message

with XML Encryption increases linearly compared to the size

of the original message for each message size. This scenario

utilizes the web server’s memory rather than the processor.

A huge size message can be provided if the message has a

lot of parameters or the input parameters are huge. We focus

for the latter case.

We propose a solution based on middleware strategy to

improve the web service performance in this scenario. At the

begging we propose the middleware layer to be implemented

on front-end web server installed with Linux server based op-

erating system. In normal mode the middleware layer forwards

the requests to the endpoint deployed on the same server. If the

load of the middleware server reaches it’s limit then additional

instance with web server will be started. If the middleware

is invoked with a huge message then the middleware splits

it to smaller chunks and forwards them to the endpoint web

service. The middleware layer thus will create a connection to

the endpoint only once to send all parts of the original request

and will not cause a big latency to create a connection for

each part of the original message.

This solution doesn’t rent additional resources but trans-

forms the original message to smaller chunks that web server

with Linux server based operating system handles better.

V. THE PERFORMANCE ANALYSIS AND DISCUSSION

This Section analyzes if our solution provides better perfor-

mance than the same endpoint web service on one platform.

A. Scenario 1 - Peak load with huge number of concurrent

messages

Figure 5 depicts the response time comparison for peak load

with small messages of 0.2KB, for example, a message with

two parameters, 3 bytes each. Both operating systems provide

similar performance, Linux in front of Windows, for up to

500 messages per second. Increasing the load, Windows’s

performance reduces more than Linux’s. For load of 1000

messages per second, Windows provides average response

time of 162.74ms compared to Linux’s 26.26ms. Our new

proposed solution produces smaller latency compared to tra-

ditional endpoint, thus implementing middleware will provide

better performance than traditional endpoint on Windows for

peak loads with small messages.

B. Scenario 2 - Peak load with huge messages

Figure 6 depicts the response time comparison for peak

load with huge messages of 1MB. Windows operating systems

c©2012 Faculty of Computer Science and Engineering

The 9th Conference for Informatics and Information Technology (CIIT 2012) 

 !"



The 9th Conference for Informatics and Information Technology (CIIT 2012)

Fig. 5. Response time for peak load with small messages of 0.2KB [4]

Fig. 6. Response time for peak load with huge messages of 1MB [4]

provides better performance than Linux for huge message of

1MB. The Linux’s performance reduces more than Linux’s

increasing the number of messages per second. For example,

for load of 5 messages per second, Windows provides average

response time of 110.83ms compared to Linux’s 470.76ms.

If we compare the results of Figures 5 and 6 we can

conclude that our solution for this scenario has two benefits.

Those messages that will be divided and forwarded to the same

web server as middleware will use the better performance that

Linux provides compared to Windows for peak load with small

messages. The messages forwarded to the other instance of

virtual machine with Windows operating system will use the

better performance that Windows provides compared to Linux

for peak load with huge messages.

VI. CONCLUSION

This paper describes solutions for two possible peaks in

web service response time, peaks that appear due to increased

number of concurrent requests and peaks with increased load

due to huge message size. For the former peaks we propose a

middleware based solution that will dynamically instantiate

and shut additional instances. The middleware should be

deployed on the same machine as the endpoint web service on

Linux server based operating system since it provides better

performance than Windows operating systems for small load.

When peak load occurs, the middleware forwards the client

requests among two endpoint web services, the first deployed

on the same machine as the middleware and the other on the

additional instance.

The middleware based solution for peak loads with huge

message size will forward the requests from the clients to

the endpoint web service deployed on the same machine.

We assume that Linux server based operating system will be

installed for small number of huge messages. If the response

time increases beyond the threshold, then the middleware

strategy will split the input parameters into smaller chunks

that Linux operating system can process faster rather than the

whole message. If the peak is even bigger, then the middleware

will start additional instance installed with Windows Server

based operating system and forwards the client requests among

two endpoint web services, the whole messages to Windows

Server based operating system and the messages divided into

smaller chunks on Linux Server based operating system.

Therefore, the additional latency that the middleware pro-

duces will be compensated with faster response from the

endpoint web services. This solution will provide better per-

formance for both peak loads and sometimes even with smaller

resources for peak load with huge messages.

VII. FUTURE WORK

In this paper we used the results in [4] to develop a

middleware strategy where virtualization with ESXi is used.

Our future plan is to analyze the performance of instance in

the cloud with different operating systems and different web

servers to develop a strategy for different platforms including

operating system, runtime environment and middleware.

Another research will be performed in the area of high per-

formance computing for loads with huge message size. There

are some problems that are easily and efficiently parallelized

that can provide even better performance.

REFERENCES

[1] S. Rajan and A. Jairath, “Cloud computing: The fifth generation of com-
puting,” in Communication Systems and Network Technologies (CSNT),

2011 International Conference on, june 2011, pp. 665 –667.
[2] S. Ristov, M. Gusev, and M. Kostoska, “Cloud computing security in

business information systems,” International Journal of Network Security

& Its Applications (IJNSA), vol. 4, no. 2, pp. 75–93, 2012.
[3] S. Ristov, M. Gusev, and G. Velkoski, “A middleware strategy to survive

peak loads in cloud,” 2012, to be published in CiiT2012 Proceedings.
[4] S. Ristov, “Analysis of web service security and its impact on web server

performance,” May 2011, Master Thesis.
[5] Openstack. (2012, Feb.) Openstack compute. [Online]. Available: http:

//openstack.org/projects/compute/
[6] ——. (2012, Feb.) Openstack setup. [Online]. Avail-

able: http://docs.openstack.org/cactus/openstack-compute/starter/content/
Introduction-d1e390.html

[7] ——. (2012, Feb.) Openstack network. [Online]. Avail-
able: http://docs.openstack.org/cactus/openstack-compute/admin/content/
configuring-flat-networking.html

[8] SoapUI. (2012, Jan.) Soapui functional testing tool for web service
testing. [Online]. Available: http://www.soapui.org/

[9] S. Ristov and A. Tentov, “Performance impact correlation of message
size vs. concurrent users implementing web service security on linux
platform,” in ICT Innovations 2011, ser. Advances in Intelligent and Soft
Computing, vol. 150. Springer Berlin / Heidelberg, 2012, pp. 367–377.

c©2012 Faculty of Computer Science and Engineering

The 9th Conference for Informatics and Information Technology (CIIT 2012) 

158


