
The 9th Conference for Informatics and Information Technology (CIIT 2012)

©2012 Faculty of Computer Science and Engineering

INTEGRATION AND ORCHESTRATION FOR MONOPOLY CLOUD

SOLUTION

Stefan Mitev, Nino Karas, Marjan Gusev, Dragan Sahpaski

Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia

{stefan.mitev, nino.karas, marjan.gushev, dragan.sahpaski @finki.ukim.mk}

ABSTRACT

Growth in the field of the Internet Web Based Technologies

and establishment of Cloud SaaS (Software as a Service)

solutions, initiates various challenges and creative

implementations such as solving problems of integration and

orchestration of different web services. The aim of this article

is to present how we have faced practical problems of

integration and orchestration, realizing the game Monopoly

by web based technologies. We have made several

experiments to define the technology that will allow us to

exchange information, without the need of global

synchronization, and yet enable on-line presence by push

technologies. Web sockets and web services were the most

promising and appropriate technologies for our project. In this

paper we present the software architecture of the solution and

describe the details of integration and orchestration. The goal

of the game Monopoly is to enable a platform where various

cities and landmarks will be built by industries realized as

web services by different vendors (students in our example)

and enable on-line execution realized as Internet based game.

I. INTRODUCTION

A. Software Trends

Fast technological growth enables us to think more freely and

creatively in the world of IT. Every day, new principles and

methods that bring more power to the developers’ arsenal are

emerging on the web. In order to stay concurrent on the

market, one has to incorporate all the trendy technologies, and

keep up with every change happening. As noted in his article

[1], Somasegar says that Microsoft is trying to broaden the

view by incorporating these new technologies in order to

satisfy their customers, and stay concurrent on the market.

The most promising technologies today are mostly web

centric. The cloud paradigm (the topic of this article) is taking

notable position in the IT world. Namely, the idea is to spread

data, information and variety of services across the cloud

(Internet), and access them from everywhere. Providers of

such services also aid the need of the resource-hungry clients,

talking in terms of CPU power, memory, etc. Other prominent

technologies numbered in Somasegar’s article are: The web

platform, parallel computing, proliferation of devices, agile

development process, distributed development, etc.

B. SaaS

SaaS (Software as a Service) is one segment of the cloud

paradigm that is getting more attention in the recent years. It

is also referred to, as “on-demand software” because it has an

architecture that distinguishes the roles of both the provider

and the client [2]. The software as a whole (physically) is

owned only by the provider, while, it stands in the service of

the clients.

The key players in the field of software saw this as an

opportunity for even bigger profits and market share. They

devised plans to integrate it in their production processes and

offer their software as a service on the cloud. In the early

stages, the web hosts were well suited for SaaS [3]. Today we

can see many software products that are brought to us as a

SaaS by the big software companies like: Google, Microsoft,

etc. Lately, most MMORPG games are SaaS alike since they

charge monthly fee. Some of them use micro-transactional

model, which again can be classified as SaaS.

C. Problem description

The passion for technology led us to use cloud concepts and

all technologies that support it. However developing a SaaS

solution needs comprehensive understanding of the web and

its technologies in order to get competitive in the IT world.

So, we have started to experiment with available technologies

to feel the true power beyond the theory.

The purpose of this paper is to explain integration and

orchestration aspects of the solution we have realized. The

initial idea was to create SaaS solution of the game Monopoly

by various vendors (in our case students) that would create

modules which integrated create the game flow.

Developing the game Monopoly was quite a challenge

because we tried to involve as many students as possible. The

game as whole was logically divided to modules that

eventually later on would represent sub-projects for the

students. Our approach to this realization was to create game

that is SaaS alike but modularized and spread across the web,

i.e. decentralized. This way we tried to create platform that is

easy changeable and upgradeable.

Each module (a constituent part of the game) acts as

provider of SaaS solution for the core of the game. The core,

potentially integrates all the modules by using their services,

and run the whole game logic. Details of implementation are

defined and explained further on.

II. PROBLEM DEFINITION

We started with the concepts of the cloud and tried to find the

most appropriate methods that will apply to our solution. The

challenge to create the game Monopoly helped us review

many ways to approach the problem at hand.

One of the first questions that arose dealt with the

specificity of the technology that we wanted to use. We had to

 !"

The 9th Conference for Informatics and Information Technology (CIIT 2012)

pick a technology for the core and all the other game asset

services. According to the cloud concepts of the solution, we

had to plan ahead future expenditure with new submodules,

and create some general concepts onto which this platform

would be built with great scalability.

A. Working environment

Specification and setup of a working environment is required

prior to the design and implementation phase. So, at the

beginning we had discussion about the tools that are to be

used, the way that all the communication is to be done, and

other relevant matter.

Since a lot of students were working on the project, we

had to have great control over the code and documentation, so

to keep consistent state for everyone involved. Before the

mere start, each student had to design some kind of

preliminary application programming interface and provide it

to the rest of his students so they can use it whenever needed.

Also, during the project every student had to maintain a

graphical user interface that would be used as tool for easier

debugging, and controlling the work of the student to a given

point in time.

B. Architectural design

The model of the software architecture was designed closely

related to the web technologies we were about to use. Cloud

concepts used in the software architecture model are

presented in Fig.1.

Fig. 1. Cloud concept for games.

A proper description of the architecture in terms of web

sockets, web services and other commonly used web

technologies is also required to realize the solution correctly.

Despite the fact that we were trying to create modularized

and a loosely coupled solution, we still needed to create

relationship in terms of the services that consist the initial

version of the game. Using this approach enables building

services that were about to be developed and integrated in this

project on top of the base. The game had to be divided in two

major submodules, one for the server side which would run

the game flow and its logic, and other for the players' side

which is actually the interface that the player uses to interact

with the other players and compete in-game. The server side

was further divided onto smaller submodules.

C. Functional requirements

The server side should contain the core module that has

to integrate all the remaining modules, and run the entire

game. There are some rules the Monopoly game follows [4],

and those rules should be coded in the logic of the core

module. Every player, prior to any further action has to role a

dice. The dice number is the number of fields he should move

on the board, after which, appropriate actions related to his

standing-field are available. The role-dice turns are in circular

manner, so, every player is invited to role the dice and

continue with further actions in limited time span. If the

player chooses to skip his turn, the next player is invited to

roll.

The bank keeps account balances and logs for every

player. When the player wants to buy or sell something, he

consults the bank to get these actions done. This kind of

services are integrated by the core and every time the player

initiates any of the available actions, his calls are propagated

to the server where the core module resides. In order to create

transparency for every player, the core sends messages for the

game state after the active player has performed any of the

actions.

When a new game is started, the server prepares the

gaming environment by loading every module in place,

setting up the starting balance for every player, and starting

the global timers. These and some more issues are described

in detail later on.

The client side of the game should be separated on two

major sub-tasks, one is the GUI, which is the look and feel of

the game, and the other is code-behind, which keeps set of

functionalities and Meta data for the particular player. This

data should be used to keep track of some important

information that will help the server to distinguish the players.

Some of the functionalities that would reside on the

players' side are auxiliary and would ease the communication

with the core module on the server. While others, would

control the look at feel of the game in point of time. So, the

client side should be very dynamic and animated because we

are modeling solution for a game. According to this, we made

weak logical division of these two major modules, one is

more code design oriented (auxiliary functionalities), while

the other is more graphically design oriented (GUI).

D. Problem of linking different modules

With the server and client major modules aside, we had to

devise plans for linking both to work in cohesion. The server

side has only few tasks that are independent of the client’s.

The roll-dice invitation and some messages are those tasks the

server can handle without previous synchronization with the

client.

However, between invitations the server has to know the

state of the active player i.e. if the player rolled and

performed action or skipped his turn. This problem should be

186

The 9th Conference for Informatics and Information Technology (CIIT 2012)

solved by coding logic on both sides and somehow connect

those through the web.

The goal is to minimize this synchronization problem and

focus more on the other tasks, but consistent state across the

players’ browsers was crucial and tightly connected to

synchronization.

III. PROBLEM SOLUTION

Due to variety of students working on this project, a shared

project was created to reside in repository on the web. Google

share looked best for these needs. We created directories and

set-up the basic structure. The license type for the project was

GNU GPL version 3. Next a forum was established as a place

where all students can write the problems they face, so the

others can help if possible. In the planning phase due to the

nature of the game Monopoly it was roughly divided in

logical units that later on would eventually become modules.

Using this approach, we could create subprojects and

divide the work among the students. Then, each student had

to describe his project in terms of brief abstract description

and a must-have application programming interface (API).

The API would help the others understand the services one’s

project offers, but also help for easier integration with the rest

of the modules. After initial adjustments, we had to pick the

technologies that will help us realize the game. The main

technology used was ASP.NET along with JavaScript, CSS,

etc. Despite the small size of the project we still used database

for the game’s data, in this case the MS SQL Server. To

connect the core module and the players we used service

Pusher, which helped us a lot in this project. All the modules

were mainly created as web services.

After this initial set-up we were ready to start designing

the modules and the connections among them. Reference

diagrams were created to illustrate the modules and their

connections. This would help us overview the system of

modules as a whole, and derive the architecture of the game.

A. Architectural model

During the planning phase we had rough overview of the

modules and their connections in the system. In the design

phase we focused more on this issue and started to build more

complex and detailed software architecture design, which

would address all the sub-problems that would arise. At the

highest level, our design consisted of many modules that

would potentially reside on different servers across the web.

All of their services would be exposed to one core

module that would run the whole game flow, as presented in

Fig.2. Again, this core module could reside on yet another

server. This way we defined loosely coupled modularized

game that would be easier to maintain and upgrade.

The client’s (player) side could be again seen as module,

but this module was unique in the way that the core module

controlled its characteristics. In other words, the client’s

module is capable of doing specific actions if allowed by the

core module. This is the way we control the actions of the

players. When one gets the chance to play, the others are

limited in their actions and wait for their turn to come. The

client’s module is dynamically created and given to the client

upon his request.

Fig. 2. Architecture of the Monopoly cloud solution.

All of the modularization and interconnection among the

modules is due the fact that we tried to create cloud solution

for the game. All modules would act as SaaS structures and

the core module, which also integrates them, would use their

services.

B. Server side

The server side consists of the core module and all the rest of

the modules that are auxiliary and help the core in creating

the game flow as presented in Fig.3.

Fig. 3. Server side modularization.

The core is module where the game logic is written. It

runs a loop that doesn’t stop until the end of the game. This

loop repeatedly invites the players to play their turns. The

players are invited in circular manner. If the active player

doesn’t want to roll the dice (the first step of one’s turn) his

turn is skipped and the next player is active. After the player

rolls the dice, the server dynamically creates the client’s

module and returns it to the player, after which the player is

able to proceed with further actions during his turn. Using this

approach the core refines the client module upon the player’s

actions, i.e. it acts as an observer.

The 9th Conference for Informatics and Information Technology (CIIT 2012)

Some problems occurred due to the characteristics a web

application possesses. In a web application the memory

allocation is lost after the server processes the request and

returns the result. This was unacceptable for us because there

were some data that were needed constantly at the client’s

side.

These data had to be kept consistent across all the

players, and not lost upon one’s call. Luckily we had our core

defined to run in a loop that meant that its life cycle was as

long as the game lasted. So, we could just put all the data in

the core and let the clients use it. But, this turned out to be

hard to achieve because another problem occurred all of a

sudden. The core couldn’t just run in loop till the game is not

finished since it would slow down the client’s requests by

introducing delay in the response. To fix this issue we

decided to use threading and separate the loop of the game in

separate thread that would run in the background with the

server’s system clock. The client’s calls would be

asynchronously handled and their response should be returned

by the core. But again one problem showed up after the

separation of the core in another thread. A process put to

work in different thread, is locked for outside communication

and could not be accessed. It can only emit messages and

calls to the outside. This was again unacceptable for us

because we kept the data inside the core and the clients had to

use it. After a while, we put an end to this chain of problems

with introduction of the “mediator object” which solved these

issues in elegant way.

C. Mediator object

The mediator object helped us to allow communication

between the core and the players in both ways as presented in

Fig.4.

Fig. 4. Mediator object illustration.

Because we had the core running in loop we could use an

object inside it and grant access to all the players and the core

itself. This object was created as a singleton, and whenever

some change happened everyone could see it. When the

players need to read or write data in the object, they just need

to get the instance of the object through its class and do the

desired changes. Next time the core checks the state of the

object, it would see the changes made by the last player who

altered its state. So, this object was mediator between the

players and the core, and set between both in the cloud. The

data inside the object was separated in two groups. The first

group consists of data that is not changed at all since the start

of the game, while, the other group consists of data that is

changed upon player turn changes.

So, this object should have partially changeable context

that is changed on regular time intervals. The data that is not

changed consists of instances of the other auxiliary modules

that are needed by the core. The changeable data is consisted

of the information for the active player. Those are primarily:

id, name and field index of the active player. These data –as

shown later in the problem of linking – help the core to

distinguish the players and their allowable actions. After his

actions, the player changes the context of the object so the

core can see these actions, and based on them refine the

client’s module. Every player has a time span to perform his

actions during his turn. When this time expires, the core

switches context of the mediator object and prepares it for the

next player, after which invites him to roll the dice.

D. Client side

The client side is described by the client’s module, which

actually is the served page by the core. This page contains

various functionalities (JavaScript) enabled or disabled by the

core before it serves the page to the player upon his actions.

For reasons explained later, inside this page there is a hidden

field that keeps the id of the player.

There are several functionalities that are independent of

the core and help with dynamically decorating the GUI. Other

functionalities are indirectly dependent of the core. Their use

is the propagation of the player’s requests to the core with the

help of the mediator object. Some of the functionalities are

there to assist the Pusher service which can invoke them if

instructed by the core. These functionalities provide the core

with the mechanisms to dynamically change the GUI of the

player when needed. One such example is the message stream

that the core is producing. When the active player performs

an action, the core notifies all the other players with help of

the Pusher service, by instructing it to invoke the

functionalities for writing a message in the clients’ browsers.

Some of the actions the player can perform are those that

determine the possible moves he can make in the game

Monopoly. The actions can be divided in two groups, the first

of which are those that can be initiated by the player, and the

other is those that are performed upon specific event happens.

Such actions are buying or selling houses, hotels, fields or

other properties. The one that are event based could be:

stepping the finishing line, stepping on a field that is owned

by another player, going to jail, chance cards, community

chest, etc. The rules of the game are coded inside the logic of

the auxiliary services. These rules limit the player in terms of

his actions.

E. Game assets

The auxiliary modules create the gaming environment. These

modules are: bank, property register, construction-companies

register, wineries register, hotels register, museums register,

universities register, chance cards, community chests, etc.

These modules are independent of the core but they offer their

188

The 9th Conference for Informatics and Information Technology (CIIT 2012)

services to the core and are of crucial importance for the

game. The bank keeps track of the players’ accounts, their

balance and transaction logs. It governs rules for withdrawing

or depositing money. It takes properties under mortgage and

buys or sells them if needed. Before the game begins, the

bank gives every player the same starting amount of money.

The property register keeps track of the properties’

owners. It governs the sell or buy price for every property, the

taxes for building hotels and houses, and other property

related matters. It also follows rules for building hotels or

houses on the actual field. For example, the player needs to

own some quantity of houses before building hotels. The

fields are divided into groups with unique color. When the

player wants to build house he has to own all the fields of the

same group, or otherwise he is not allowed to build any

house. The property module governs these and some more

rules.

The other register-like modules help in decorating the

game for better gaming experience. When the active player is

located on any of the fields, these modules give information

about the objects and landmarks located on that field. So, the

player can also use the game as an educational tool and learn

about the many objects and landmarks located in a specific

region (in our case is Macedonia).

F. Linking the modules

With all the modules designed and implemented, it was time

to link all of them and run the game. We wanted to care less

about synchronizing everything the hard-coded way. To avoid

the synchronization we found great service that helped us

with the linkage problem. The service Pusher is using various

technologies to enable communication through the web on

great scale. Its main technology is web sockets, which enables

full-duplex communication between a server and its users, as

depicted in Fig.5.

Fig. 5. Pusher service illustration.

The service uses the concept of broadcast channels and

allows the server to emit messages through this channel to all

the listeners attached to it. So, in our case the players are

listeners and the core is the emitter. This creates two-way

observer pattern, as earlier mentioned, the core listens for

changes made by the player with the help of the mediator

object, and the players listen to the changes made by the core,

again with the help of the mediator object. Since the pusher

service is broadcasting the messages and changes the context

of the client’s module according to the active player, we had

to use the ids of the hidden field at the client and that of the

mediator object to separate the actions for the active player

and those for the other players. When a match occurs, the

actions for buying and selling are unlocked for that player.

The other players just receive the notification messages

during this period of the game.

Prior to the game start all the players are attached to the

global channel where the core emits the messages and runs

the whole game. The core can initiate call to one of the

functionalities that reside on the client’s side with help of the

Pusher service. This way it can divide the need of resources

and process some of the work on the client’s side.

IV. GAME FLOW

The game starts with creating names and waiting for the

others to be ready for start. When everyone is ready, a timer is

counting down after witch every player is redirected to the

main game screen (the board). The first player is given the

chance to roll the dice and a timer counts from 10 to 0. If the

player doesn’t roll during this time interval, his turn is passed

and the next player is invited to roll the dice. If the player

rolls, the number he rolled is the number of steps he should

move on the board.

When the player lands on a field, the various register-like

services provide information about the objects and landmarks

residing on that field. The player can choose to visit some of

them and gain some points. For the visit he is charged small

amount of money. If the field is not owned by anybody, the

player is able to buy it and later on build houses and hotels on

it. If the field is owned (a privet property), the player is

charged by a fee or tax for passing by on foreign field.

There are some fields that can only by bought but there’s

no option for building anything on them. These fields are the

railway stations, electricity factory, and similar. But again, if

foreigner steps on these fields, he is charged for passing by.

The chance and community fields are special ones. When the

player lands on those, he can get some bonuses in terms of

free roll or money.

The “police” field sends the lander to the jail where he is

put for the next two turns. If there is lander on the jail field

without previously sent from the police, then he is just visitor

and nothing is done to him.

The rules for building houses and hotels are as follows:

The player can build house if he owns the fields in the same

group as the actual one. Hotels can be built if the player owns

at least one house on all the fields in the same group as the

actual one. If the player needs money to raise his budget, then

he can put some of his properties on mortgage at the bank.

These are some of the rules that the game follows, and more

about them can be read on the previously given reference.

V. COMPARISON

There are many Monopoly games on the Internet [6, 7].

Some of them run using adobe flash technology, others as

The 9th Conference for Informatics and Information Technology (CIIT 2012)

embedded programs (java servlets). No matter the technology

of implementation, all the games we’ve found so far share the

same characteristic by being implemented as one module.

These games are indivisible and usually reside on one server.

Our solution exposes the cloud SaaS structure and creates

platform that could be used by many types of games. Using

this approach it is easier to upgrades and maintain the game.

The modules are loosely coupled and are only bound by

the core which is yet another module. This scalability allows

adding new modules that would decorate the game even

further.

Also, the reliability is on higher level since the modules

are spread across many servers. If one of the modules is not

working the game could possibly continue without a loss or

any notable damage, on the other hand, games that are tightly

connected tend to be more erroneous because it is harder to

reveal the bugs. If a system failure occurs then the whole

game would not run.

It is also harder to add new changes to existing parts of

the game because sometimes this would require recoding or

even redesigning the old parts. In a modularized way, the

module that is to be changed can be isolated and worked on

its own, or even replaced with new one.

Another issue that is good to compare is the fact that

these types of games use the resources of the clients

exclusively. Whereas the cloud SaaS one uses better share of

the resources available to the server, and less of the client’s

resources.

VI. CONCLUSION

We present a cloud solution of a Monopoly game with

special intention how we solved the integration and

orchestration problems using appropriate web technologies.

Brief overview was taken on the software trends about using

the cloud and developing a SaaS solution.

Along the phase of design and development of the project

we faced some obstacles that we succeeded to overcome. A

sophisticated software engineering approach was used during

the project, starting wit the process of planning, design and

implementation and roll-out by managing different teams and

corresponding background using various of technologies.

According to Gartner [8], the cloud and PaaS (Platform

as a service) is about to dominate the field of IT in the

following years. We are surrounded by the globalization and

virtual socialization, and this leads us to think for the cloud,

examine it well and learn more about it. The cloud itself could

minimize the software piracy that many developers struggle

with. Since the software is on the cloud, no one except the

developer has the exclusive right to run it and manipulate

with it. The users of the services that this software offers are

not aware of the type or the way the software behaves. They

just hand off the parameters and get the answers. This

changes the business model from one-time charge, to per-

service or monthly fee charge, since the users pay only for the

service and not for the software or its license. Additionally,

advertising and marketing could be promoted through the

cloud, which again adds more benefits and stand as financial

source for the provider. Many new companies that need

services from software that would cost many thousands could

leverage on the providers of a cloud solutions for affordable

monthly fee. Productivity is not limited by any means, since

there is great support from these providers that have the

resources and power to aid the needs of the startups, or even

serious business players. The providers of the cloud solutions

care about their software maintenance and upgrade it

constantly, which means that the users would not need to

worry about these issues. Many businesses that run traditional

on-premise in-house software would cut off the costs for such

maintenance, if they switch to cloud solutions. The cloud

changes the way users interact with the software, the way the

businesses gather and process information, or keep data [9]. It

promotes the globalization in the IT world more than ever.

REFERENCES

[1] S. Somasegar, “Key Software Development Trends”, Microsoft

Developer Division Somasegar’s blog, 23 Feb 2010,
blogs.msdn.com/b/somasegar/archive/2010/02/23/key-software-

development-trends.aspx

[2] Software as a Service, Cloud taxonomy, 2012, online,
cloudtaxonomy.opencrowd.com/taxonomy/software-as-a-service/

[3] J. Brodkin, “Trends in Software as a Service”, PC World, 16 Jul 2007
www.pcworld.com/article/135119/trends_in_software_as_a_service.ht

ml

[4] Official Monopoly game rules, Tripod, online,
richard_wilding.tripod.com/monorules.htm

[5] Pusher software product, online, http://pusher.com/

[6] Monopoly game, online, www.hasbro.com/monopoly/en_US/

[7] Play Monopoly Online, Pogo com, online, board-

games.pogo.com/games/monopoly

[8] D. Roe, “Gartner’s 5 trends for enterprise software”, 4 Feb 2011, online,
www.cmswire.com/cms/enterprise-cms/gartners-5-trends-for-

enterprise-software-010089.php

[9] Gartner news, “Gartner outlines five cloud computing trends that will
affect cloud strategy through 2015”, online,

www.gartner.com/it/page.jsp?id=1971515

190

