
The 9th Conference for Informatics and Information Technology (CIIT 2012)

©2012 Faculty of Computer Science and Engineering

WEB SOCKETS ENABLED ON-LINE PRESENCE AND REALTIME GAME

NAVIGATION IN MONOPOLY CLOUD SOLUTION

Nino Karas, Stefan Mitev, Marjan Gusev, Dragan Sahpaski

Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia

{stefan.mitev, nino.karas, marjan.gushev, dragan.sahpaski @finki.ukim.mk}

ABSTRACT

The project goal was to create a Software as a Service - cloud

solution for the Monopoly game, where a lot of independent

entities (students) will build web services and enable

realization of a real-time game. In the process of realization

and implementation we have faced two big challenges: web

service orchestration and real-time multiplayer game

navigation. The aim of this article is to present how we faced

and solved the multiplayer navigation challenge using the

latest IT technologies. In this paper we will give a description

of the implementation and why we chose the HTML 5 web

sockets as a core technology for the solution over the other

known technologies.

I. INTRODUCTION

The number of active on-line users is increasing along with

global expansion of Internet. To cope with increased demand,

the IT scientists and developers work hard to develop more

powerful and sophisticated technologies. As a consequence,

the Internet applications and services, supported by these new

technologies become more complex and new problems arise

concerning the Internet services and their integration in many

daily used applications. For example, the on-line presence of

the user has to be solved for different entities in cloud since it

has become a crucial part of almost every modern Internet

application. Besides the online presence, the requirements of

the modern Internet users became more complex as today

they are looking for complete solutions of their problems in

the cloud.

Game industry as increasing trend set also a lot of new

requirements. For example, the users are looking to play

online multiplayer games that are completely in the cloud and

don’t require any additional software parts to be installed on

the user’s computer.

 We developed and implemented a complete cloud

solution of a game that allows users to play an extended

multiplayer version of the classic monopoly board game. The

game extends the classic board game in a way that the theme

– story of the game is changed and some additional rules are

added based on the story. Our version of the monopoly game

uses a map of all Macedonian cities and predefined route to

cross them, more complex banking system, more complex

procedure to buy and build objects, some additional features

depending on which city the user is currently visiting etc.

Implementation of these additional features required

completely separate web services that communicate between

each other. We have also set a goal that the game will be

played in multiplayer environment and that it will feature real

time navigation of the players and update the game statistics.

While implementing the game we face two big challenges:

the orchestration of many independent web services, and real

time multiplayer game navigation. In order to solve the real-

time navigation we have performed several experiments using

the latest IT technologies.

II. PROBLEM DEFINITION

By analysing the classic Monopoly board game, one can split

the game itself in two key segments: strategic part (“Should I

buy the hotel?”) and navigation part (spinning the dice and

moving the figures through fields).

Transforming the board game into the multiplayer on-line

environment raises issues with the least part. The main issue

is the following – how to simulate the movement of the

figures i.e. how to move the figures in parallel on multiple

independent web clients. This problem raises more questions

about the implementation of the game logic itself because the

navigation is the essential part of the game. Should the game

logic and the navigation be centralized in one place on a

server, or distributed for different clients and then

synchronized? The answer of this question really depends on

the technology that we will be using.

According to the limitation not to use any additional

software installed on the user’s computer, we are certain that

we will have to implement the navigation using the known

web technologies.

III. ANALYSIS OF AVAILABLE TECHNOLOGIES

In this section we will present the available technologies and

discuss which will be more relevant for our Cloud Computing

SaaS solution. We will shortly discuss polling, long polling

(comet programming) and push technology.

A. Polling

The solution based on polling is the standard solution that

will probably come as an initial idea for the solution after the

first look up on the problem. This would be the classical

solution approach for the problem using the principles on

which the web was originally defined. The solution would be

implemented in the way that each of the users (clients)

continuously sends request to the server asking for new data

and gets responses for each request.

The problems that arise using this approach are obvious -

the navigation definitely wouldn’t be real time and the load

the server would be enormous. Clients should constantly

send requests in order to get new data from the server for each

single event. For example, one event is the movement of the

pawns on the map, the other event would be the value of the

rolled dice, and for each event in the game the client would

bomb the server with new requests. Too much requests mean

increased overhead on the communication connection and

will instantly reflect on overload of the server. A real

drawback of performances will happen even with just a few

parallel players.

 !

The 9th Conference for Informatics and Information Technology (CIIT 2012)

We had goal not to limit the number of players and trying

to find another solution that will reduce the problem of huge

number of requests from the users. The analysis showed that a

relevant technology that will solve this problem is based on

push notifications where the server will notify users for new

data from certain event, for example, when a player’s pawn is

moved or when the dice are thrown.

B. Long-Polling/Comet programming

This methodology is based on the fact that the client sends a

request for new data to the server, and if the server currently

doesn’t have the requested data it doesn’t terminate the

request but keeps it open. At the moment when the server

acquires the needed data it returns a response to the client and

terminates the request. Immediately after completion of one

request/response cycle like that, the client sends new request

starting a new cycle. [2]

The solution implemented using this approach will

significantly improve the performance compared to the

solution implemented using a polling methodology. All this

improvement relates to the cut of the number of request and

response cycles. For example, if for the event “result of the

rolled dice” we are using a polling methodology then a lot of

empty request/response cycles will be performed needlessly

over the period when one player is considering what to do

when he gets his turn - "whether to buy a house or pay a toll."

Although this methodology cuts the number of empty

request/response cycles still the approach remains the same.

The pawn navigation among multiple users will be far better

but still that will not be real time navigation. The usage of this

methodology will partly relieve the server yet a single client

will still send multiple requests asking for data needed for

multiple events. This still represents a huge overhead of work

for the server.

C. Web Sockets

WebSocket is a concept developed as a part of the HTML 5

initiative. This concept brings a new way of communication

between clients and servers in the way that it simplifies the

complexity around bi-directional web communication and

with that provides much better performance than the other

known technologies and techniques. This technology defines

full duplex channel communication over a single TCP socket

that makes WebSocket a new kind of PUSH technology. The

architecture of usage in the cloud concept of the Monopoly

game is presented in Fig.1 [3].

Fig. 1. Architecture of cloud solution using web sockets.

The whole specification of this technology is described in

two parts, the WebSockets application programming interface

standardized by W3C, and the WebSockets protocol that is

standardized by IETF. The model of WebSockets communi-

cation is presented in Fig.2.

Fig. 2. Communication with web sockets.

The API defines an interface for communication between

the browser and the web application, and each browser that

supports WebSockets must provide and support this API to

JavaScript web applications. The interface defines functions

to that open, close WebSockets connection and functions to

send WebSocket message.

The protocol describes the actual WebSocket communi-

cation and it is used by the API functions. When the

application wants to send WebSocket message to a given end

point, the application calls the API function to make the

WebSocket connection. This function using the WebSocket

protocol sends a handshake request to the given end point

server, which is an HTTP request with an extra header fields.

Using these extra fields the server calculates a hash value and

gives the response to the client, by which it indicates if it

supports WebSockets communication or not. If the handshake

is successful, the client can send messages to the server, and

the server can send messages to the client without being

initiated from the client. [1].

The solution based on this technology will greatly releive

the server from the request/response cycles. That means that

the clients can be notified when a pawn is moved on the track

or when the dice is roled by the server without asking

constantly sending requests to the server asking “Is the dice

rolled?”.

IV. SELECTION OF WEB TECHNOLOGY

In previous section we have analysed possible web

technologies to be used for real-time navigation as a basis for

the Cloud Computing SaaS solution of Monopoly game.

Table 1 presents an overview of possible features for

successful solution, the suggested technologies, and which

technology supports certain feature.

Table 1: Comparison of different technologies.

Technology Data update Push update Channels

Polling X / /

Long-Polling X X /

WebSockets X X X

192

The 9th Conference for Informatics and Information Technology (CIIT 2012)

Comparing the possible implementations as technology to

realize the navigation part in the Monopoly game, the

implementation with Web Sockets stands as a definitive

winner before polling and long-polling (comet programming)

methodologies. The push possibilities of this technology

makes the solution architecture much simpler, while getting

much better performance i.e. real time navigation compared

with implementations using the other two methodologies.

Besides the better performance about the navigation, it

significantly lowers the hardware requirements of the server

side because it reduces a large part of the additional work that

is generated through request/response cycles. Implementation

of Web Socket server used in our solution enables channelled

connectivity while separating all the events on which the

navigation part should respond and in some way creating

architecture that is fully event compatible.

When you implement a solution for the application in

which the WebSocket concept of sharing data will be used,

you must implement and WebSocket server that will provide

the communication. There are both Commercial and Non-

commercial implementations of WebSocket servers.

A. Non-commercial implementations

This type of implementation of the WebSocket server

typically includes predefined software to be installed on the

server, so that means that you should be supplied with servers

in order to establish this environment. The fact that these

implementations are non-commercial leads to the fact that

they are a volunteer projects or student projects. For the same

reason often happens that these implementations do not have

well-written documentation, no support and in many cases

there are limitations of languages and programming

environments in which they can be integrated/implemented.

One of the most popular non-commercial implementations

that we analysed during the process of creation of the

navigation part in the Monopoly game are: Socket.io [4],

jWebSocket [5] and Xsockets [6].

B. Commercial implementations

The commercial type of the server implementations has better

documentations and support than the non-commercial ones.

Besides that, the commercial implementations almost always

have some additional useful features to offer implemented in

a wrapper API’s over the standard WebSockets API. These

features are related to the security, consistency, portability

etc. We’ve done experiments using some of the most popular

commercial implementations like Pusher [7] and Kaazing [8].

The last one requires the user to have his own server on which

he can install the Kaazing server. That is not the case with

Pusher and that is the main reason why we decided to Pusher

instead of Kaazing.

V. SOLUTION

Led by the results from the previous analysis of the technolo-

gies and methodologies we came with the conclusion that it

will be the best approach if the clients can get the required

data using some push style methodology. In that way we will

reduce the generated Internet traffic from the game. Besides

the Internet traffic, by cutting the empty generated request-

response cycles we reduce a lot of overhead work that the

game server should do and with that we reduce the risk of

stall moments on the server and reduce the server’s hardware

requirements. Most important by choosing the pushing

methodology we gain a speed performance in the navigation.

In order to completely reduce the request-response

cycles, decrease the server load and gain a little more in

performance speed we decided to use push technology based

on web sockets. The idea is to use the push methodology to

update the clients with newest game data and with the goal to

make the navigation real time. The following conclusions

were also made.

If we make all navigation and major events that are non-

vulnerable to run on the client side while the remaining logic

stays on server side we solve much about the issue of

performance. That way we will achieve that each client will

be responsible for layout i.e. the presentation of the current

situation on the game board and navigation of the pawns of

the players will be processed and executed locally after

receiving a push order from the server. Moreover, to simplify

the work of the game server and make better architecture it

will be better if we separate the game server and the

WebSockets server. In that way the game server will be just

another client in this communication process, and the web

socket server will play a role of message router.

In order to enable the WebSockets communication we

had to implement a WebSocket server. We than had choice to

use complete WebSockets implementation or implement our

own from scratch. There are several successful WebSocket

server implementations on the market both open source and

commercial. The main difference is that by using an open

source implementation we will have to use an additional

server and take care of its security and maintenance. That’s

why we decided to use a commercial WebSockets server

implementation Pusher. It provides his API wrapper of the

original WebSockets API, which provides additional

functions, call-back methods, security mechanisms and etc.

One of the additional features that Pusher provides is that

allows multiple channels to be created between the clients

targeting only certain groups of clients subscribed to these

groups. Additional results of our analysis and experiments

about the WebSocket server implementations can be found in

the next section.

The solution architecture is presented in Fig.3 with both

web socket and game servers.

The game runs as a process on a dedicated centralized

game server. This process communicates and orchestrates the

other web services, which are part of the game. Each client

that wants to play a game will have to log in first (login is just

another game service). Once the player is logged in, the main

application takes care of further actions and the player

receives the presentation layer from the server, the board, the

panels, etc.

Besides the presentation layer, the application will open a

WebSocket connection between the client and the WebSocket

server. The game process also opens a connection between

the process and the WebSocket Server, with the game process

playing a role of another client. Since Pusher provides

 !"

The 9th Conference for Informatics and Information Technology (CIIT 2012)

multiple channelled conversations over the same clients, each

game event has its own WebSocket channel.

Fig. 3. Cloud concept using web servers and clients.

When all of the users are logged in and ready to play the

game cycle starts running inner game logic. Each event that

happen in the game server, asks the desired client or clients to

perform some action giving them some order by appropriate

Web Socket message. When the requested client makes an

action, it sends the action result to the game server that

continues with the game flow and then gives another order to

client or clients when another event is expected to happen.

An example of the game flow is described in the following

sequence procedure:

1) Game server: Send message to player1 to roll the dice.

2) Player1: Roll the dice

3) Player1: Send message to server “P1 rolled 2”.

4) Server: Send message with info to all players “P1 rolled 2”.

5) All Players: Update info board with the given message.

6) Server: Send message about movement to all players

“Move P1 one field”.

7) All players: Move P1 one field – The animation lasts half

second

8) Server: Send message about movement to all players

“Move P1 one field”.

9) All players: Move P1 one field

The procedure continues until the game finishes.

VI. CONCLUSION

The concept of WebSockets as а new concept introduces a

complete new way of communication and technology among

web applications. This new concept provides a possibility for

direct bi-directional asynchronous communication and offers

increased performance by decreasing the server overload and

communication. Therefore it makes this push technology to

stand out from the rest and the WebSockets concept to be the

new revolutionizing step as solution for web communication

technologies.

In this article we have presented a solution how this

technology was successfully used. We created a Cloud

Computing SaaS solution of the Monopoly game and solved

the challenge to realize real time multiplayer game navigation

and on-line presence. The performance related issue was

solved as a result of the performance that this technology

offers for push messaging and the simple architecture of the

solutions.

The decision to realize the navigation to be processed

locally and guided from a centralized source represents and

additional but big detail in the complete picture.

 Ours is just one example of the successfully completed

multiplayer cloud game by the means of WebSockets. This

technology opens a wide range of new applications to be

developed, more complex cloud games even completely cloud

3D games. There is a great probability that WebSocket will

replace the other known technologies like polling, long-

polling i.e. comet programming especially in the applications

when the on-line presence of the user are live consistent data

are playing crucial part.

REFERENCES

[1] Marco Casario, Peter Elst, Charles Brown, Nathalie Wormser

and Cyril Hanquez, “HTML5 WebSocket,” HTML5

SOLUTIONS: ESSENTIAL TECHNIQUES FOR HTML5

DEVELOPERS

[2] Harri Hämäläinen, “HTML5: WebSockets,” Aalto University,

Department of Media Technology

[3] Dmitry Sheiko “WebSockets vs Server-Sent Events vs Long-

polling” (on-line) http://dsheiko.com/weblog/websockets-vs-

sse-vs-long-polling

[4] Socket.IO the cross browser WebSocket for real-time

applications (on-line) http://socket.io/

[5] JWebSocket Open Source Java WebSocket solution (on-line)

http://jwebsocket.org/

[6] Xsockets Real-time WebSocket solution (on-line)

http://xsockets.net/

[7] Pusher real-time messaging system (on-line) http://pusher.com/

[8] Kaazing WebSocket technology (on-line) http://kaazing.com/

194

