
The 9th Conference for Informatics and Information Technology (CIIT 2012)

©2012 Faculty of Computer Science and Engineering

SQL INJECTION TEST SYSTEM FOR STUDENTS

Dragi Zlatkovski Nataša Šuteva, Aleksandra Mileva
Faculty of Computer Science, UGD Faculty of Computer Science, UGD
Štip, Macedonia Štip, Macedonia

ABSTRACT

We present a new web application as a vulnerable testing
system for SQL injection attacks. Its purpose is to give
opportunity to students of Computer security courses, to
explore the nature of these modern attacks, to see how
hackers exploit them and to learn how to protect their
databases from them. Deployment of SQL injection attack on
real web applications is illegal and it is subject to prosecution
by law. With this software, we protect our students, and in the
same time, we offer them real hacking for ethical goal.

I. INTRODUCTION

Web applications present to any user a system-independent
interface for dynamically generated contents, usually through
a web browser. They relieve the developer of the
responsibility of building a client for a specific type of
computer or a specific operating system. If you log on and
check your bank account, or buy some items, or visit online
auctions, you are using a web application. Many web
applications interact with the back-end database, in a way,
that they use user’s input to construct SQL queries as a
collection of statements, by which they can modify the
structure of the database or/and manipulate its contents. It is
usually a three-tiered architecture, consisting of a web-
browser, an application server, and a back-end database
server (Fig. 1).

Because of their nature, web applications are one of the
most interesting targets of the contemporary hackers.
According to the Open Web Application Security Project, in
the OWASP Top Ten project [1], injection flaws, including
SQL injection, are the most common and serious web
application vulnerability. SQL injection attack (SQLIA) is a
kind of injection attack that occurs when an attacker, through
specially crafted input, causes given web application to
generate malicious SQL query and send it to the database.
Usually behind this attack, there is no or insufficient
validation of user input. Additionally, there are many types of
SQLIAs and their variations, and researches and practitioners
are unaware of their diversity. Several comprehensive surveys
of known SQLIAs and their countermeasures are given in [2,
3, 4, 5].

Any serious Computer security course must include web
security as integral part. It is not enough to describe known
web attacks to students, it is better for them to look and fill
these attacks for real. Deployment of these attacks on real
web applications is illegal and it is subject to prosecution by
law. In the light of that, we offer to our students a real
hacking on our test system, specially created for them. This
test system is specially designed for several SQLIAs. For
testing other web attacks (excluding SQLIA) legally, you can
use Google Gruyere codelab [6]. Remember to read the fine
print: "WARNING: Accessing or attacking a computer

system without authorization is illegal in many jurisdictions.
While doing this codelab, you are specifically granted
authorization to attack the Gruyere application as directed.
You may not attack Gruyere in ways other than described in
this codelab, nor may you attack App Engine directly or any
other Google service. You should use what you learn from the
codelab to make your own applications more secure. You
should not use it to attack any applications other than your
own, and only do that with permission from the appropriate
authorities (e.g., your company’s security team)." Similar
warning can be apply to our test system too. Another web
page for legally trying SQLIA is [7].

Figure 1: A three-tiered architecture for web application

The rest of the paper is organized as follows: Section 2
provides more information on SQL injection; Section 3 gives
an explanation of the test system. Finally, we provide
summary and conclusions in Section 4.

II. SQL INJECTION

SQL injection refers to a class of injection attacks in which
the attacker manipulates the user input, generating malicious
SQL query, which functions differently than the programmer
intended. The basic concept behind this attack has been
described for the first time by the hacker Jeff Forristal1 [8].
Several papers describe SQL injection vulnerabilities,
frequently exploited by attackers [9, 10, 11, 12].

The attack can be described in several steps. First, the
attacker provides an abnormal input, which web application
screens and accepts as legitimate. With this input, web
application generates malicious SQL query and passes the
query to the database. The database executes this query and
produces some result as extraction of data, table deletion or
addition, record deletion, modification or insertion,
performing database finger-print, determining database
schema, authentication bypassing, escalation of privileges,
execution of a denial-of-service attack, evading detection or
execution of remote commands (listed as attack intent in [2]).
Sometimes, the database can return error messages, which can

1

Jeff Forristal, also known as RFP and rain.forest.puppy, is a hacker
currently employed at Zscaler Cloud Security.

234

The 9th Conference for Informatics and Information Technology (CIIT 2012)

also assist the attacker. In situation where the attacker has no
knowledge of the query syntax or database’s structure,
forcing an exception may reveal more details about them, for
example the table or its field names and types [9, 10].
Identifying the query syntax is mandatory for correctly
exploitation of a given flaw. The back-end database can
contain sensitive consumer or user information, so the
resulting security violations can include identity theft, loss of
confidential information, and fraud.

The main reason of SQL injection vulnerabilities is
insufficient validation of user-supplied input.

As countermeasures, one can use escaping single quotes,
limiting the input character length, filtering the exception
messages, taking user input from predefined choices, using
bind variables mechanism (or prepared statements, which
implement bind variables in Java), using parameterized
statements etc. Instead directly passing the user input in SQL
queries, parameterized statements must be used, or else user
input should be sanitized or filtered [3].

III. SQL INJECTION TEST SYSTEM

A. Overview

The SQL injection test system shows how SQL injection
vulnerabilities can be exploited and how to defend against
these attacks. The best way to learn things is by doing, so
students will get a chance to do some real penetration testing,
actually exploiting a real application.

The SQL injection test system by itself is a web
application with back-end database in MySQL and PHP for
server-side scripting. It consists of two parts, one is for
students to perform the tests, and the other is for the teacher
to see which students participated in which tests. The second
part is still in development. Database schema is given on Fig.
2.

Figure 2: Database schema

The student side consists of three main parts. The first
part is description of the different SQLIAs and the reasons
why they happen, the second part is the test system itself and
third part is the description of different countermeasures that
students need to be familiar with.

B. Usability

As a first step, the student needs to register by the full
name and index number. This information is needed
to monitor the student’s activity during interaction with the
application, and to obtain statistics for the teacher. Next, the
student performs logging, and after that, a two-hour session is
created and a separate database is installed, by PHP script.
The student’s database carries the name "testdatabase_DBN"
where DBN is a number that is auto incremental modulo
1801. The possibility to reach this number of different
databases for two-hour period is very small in recent
environment. If an error occurred while creating the database,
the student gets a proper notification and is returned to the
login page. Activity diagram is given on Fig. 3.

Figure 3: Activity diagram

If necessary tables in the database are successfully
installed and filled with data, then the student is redirected in
the area where he can start pentesting. The reason for existing
of separate user copies of test database is twofold: the nature
of some SQLIA, for example modification of database’s
schema and “sandboxing” from the other instances, so user
instance won't be affected by anyone else using our test
system.

 !"

The 9th Conference for Informatics and Information Technology (CIIT 2012)

The schema of student database is given on Fig. 4. The
database is very elementary, intentionally. We need the table
“Korisnici” (Users) for testing authentication SQLIA.

Figure 4: Student database schema

Logging out of the application, causes session termination
and deletion of the user database.

C. Tests

The codelab is organized by types of SQLIA you can
perform. There are 7 different exercises, with instructions that
need to be followed (Fig. 5). They are:

1. Authentication bypassing – by gaining access as the
first user in the table, without knowing any user
names or passwords;

2. Finding a password - if you know the name of the
password table and a user account;

3. Finding a user account;
4. Performing database fingerprinting;
5. Finding a database schema – for example, finding the

names of tables;
6. Modification of the database schema – for example,

table deletion;
7. Record manipulation – deletion, modification or

insertion of a given record.

Figure 5: SQL Injection test system

Students need to follow the instructions patiently, because
some answers are obtained as yes/no questions on log/not log
base with many trials. The instructions are very clear,
unambiguous and easy to understand, and the process of
testing is not a problem to be performed. Figure 6 shows the
screen shot of one exercise.

Figure 6: Authentication bypassing exercise

IV. CONCLUSIONS

This SQL injection test system can be useful tool as a codelab
for students to learn different SQL injection attacks. For now,
this system is still in development, and it exists only in the
faculty’s private VLAN, so only our students can use it. We
plan to make this application more functional, and after we
exceed and solve all the security problems, we will put this
web application for public use.

References

[1] OWASP Foundation, Top Ten Most Critical Web Application
Vulnerabilities, 2010. https://www.owasp.org/index.php/Top_10_2010.

[2] W. G. J. Halfond, J. Viegas, A. Orso, “A classification of SQL injection
attacks and counter measures,” Proceedings of the IEEE International
Symposium on Secure Software Engineering (ISSSE 2006), Arlington, USA,
March 2006.
[3] S-T Sun, T. H. Wei, S. Liu, S. Lau, “Classification of SQL injection
attacks,”, 2007.
[4] N. Patel, F. Mohammed, S. Sony, “SQL injection attacks: techniques and
protection mechanisms”, International Journal on Computer Science and
Engineering, Vol. 3, No. 1, 2011, 199-203.
[5] D. A. Kindy, A. K. Pathan, “A survey on SQL injection:
Vulnerabilities, attacks, and prevention techniques,” IEEE 15th International
Symposium on Consumer Electronics (ISCE), 14-17 June 2011, 468-471.
[6] Google Gruyere CodeLab [Online]. Available: https://google-
gruyere.appspot.com/
[7] http://sqlzoo.net/hack/

[8] rain.forest.puppy: NT Web Technology Vulnerabilities. Phrack
Magazine Volume 8, Issue 54. December 25, 1998.
[9] C. Anley, “Advanced SQL injection in SQL server application,”
Technical report, NGSSoftware Insight Security Research (NISR), 2002.
[Online]. Available: http://www.nextgenss.com/papers/advanced sql
injection.pdf
[10] C. Anley, “(more)advanced SQL injection in SQL server application,”
Technical report, NGSSoftware Insight Security Research (NISR), 2002.
[Online]. Available: http://www.nextgenss.com/papers/more advanced sql
injection.pdf
[11] C. Cerrudo, “Manipulating microsoft SQL server using SQL injection,”
Technical report, Application Security, Inc., 2003. [Online]. Available:
http://www.appsecinc.com/presentations/Manipulating SQL Server Using
SQL Injection.pdf
[12] B. D. A. Guimarães, “SQL injection: Not only AND 1=1,” 2nd Digital
Security Forum in Lisbon, Portugal, June 2009.

236

