
The 9th Conference for Informatics and Information Technology (CIIT 2012)

©2012 Faculty of Computer Science and Engineering

WILDCAST CONTEXT-AWARE FRAMEWORK: CASE STUDY FOR PLACE

SELECTION

Goran Bakraceski Vladimir Trajkovik

Faculty of Computer Science and Engineering Faculty of Computer Science and Engineering

Skopje, Macedonia Skopje, Macedonia

ABSTRACT

Context aware computing is a mobile computing paradigm in

which applications can discover and take advantage of

contextual information. It offers new opportunities for

application developers to develop and adopt system behaviour

based on any contextual information. In this paper we will

present core functionality and characteristics of one of the

many context management frameworks, the WildCAT

framework and its usage. We will present a demo application

that use contextual information, which is stored in WildCAT

and used for decision making.

Keyword: context, context-aware framework, WildCAT,

application

I. INTRODUCTION

With the appearance of the new generation of mobile devices,

smart phones and notebooks with their huge potential of

mobile processing and services, the ubiquitous computing

become more popular. Including the context in mobile

computing, making them able to adapt their behaviour to the

current context state makes their power even greater. But

what actually word context really means? The most accurate

definition about what the word “context” really means seems

to be the following: “any information that can be used to

characterize the situation of the entities (person, place or

object) that are considered relevant to the interaction

between the user and the application, including the

application and the user itself” [1].

 There are many approaches for modelling contextual

information but the following seems to be commonly used for

creating and storing contextual information:

· Key - value model [2]

· Markup scheme models [3], [4], [5], [6]

· Graphical models [7], [8]

· Object oriented models [9]

· Ontology based models [10], [11]

· Tree - like graph [12]

Of all contexts modelling approaches mentioned above,

in our demo application that will be presented in this paper

we will use tree-like graph for context modelling and decision

making.

In order to simplify the process of developing context

aware application an abstraction framework is needed. There

are several context frameworks available: SOCAM (Service-

Oriented Context-Aware Middleware) [13], CASS (Context-

Awareness Sub-Structure) [14], Hydrogen [15], WildCAT

[16] etc. The framework on which this demo application is

based is the WildCAT framework. We have decided to use

this framework because this is the only open source
framework that can be found.

 In this paper, we first give a quick overview of WildCAT

framework (Section II) and its fundamentals. In Section III

we will describe which contextual information will be used
and mapped with the framework and in Section IV we are

about to show a real implementation and usage of WildCAT

framework in our “Place decision maker” demo application.

In section V we will show the decision making process and

will cover different use-case and conclude in section VI.

II. WILDCAT FRAMEWORK OVERVIEW

The WildCAT framework is extensible Java framework that

eases the creation of context-aware applications. Provides a

simple and powerful dynamic model to represent an

application’s execution context and offer a simple API for the

programmers to access this information both synchronously

and asynchronously (pull and push modes).

Figure 1: WildCAT logical data model.

 Figure 1 represents the logical data model used in

WildCAT. The Context class serves as façade for the whole

system from the clients’ point of view and it is a singleton

class [17] which means only one instance exists in each

application, representing the whole context.

 The Context is organizes as an oriented tree structure

with two types of nodes:

· Attributes nodes that hold some value. Attributes
nodes are always leaf nodes, and every attribute has

248

The 9th Conference for Informatics and Information Technology (CIIT 2012)

a unique parent node. There are three types of

attributes: (i) Basic attributes (holds static values),

(ii) Active attributes (sensors) and (iii) Synthetic

attributes (the result of expressions on other

attributes)

· Resources nodes that can have zero or more children

assuming every child’s name is unique. A resource

may have more than one parent. There are two types
of resources: (i) Basic resource and (ii) Symbolic

link (resources that alter path resolution by pointing

to another resource).

The main features of WildCAT are: (i) its simplicity from the

end-user (i.e. application programmer) point of view, with a

familiar hierarchical data model and a small and easy to use

API, and (ii) its extensibility due to its framework approach

which supports different levels of customization.

III. USING WILDCAT IN “PLACE DECISION MAKER”

In order to show the real usage of this WildCAT context

management framework, we will develop a demo application

(the real application should be mobile application that will

acquire contextual information from smart phone sensors and

services) that will use different types of context information

to make different reasoning operations. For this purpose we

have defined four times of different context information:

· Location (city)

· Season (Winter, Spring, Summer, Autumn)

· Time of day (Morning, Noon, Evening)

· Weather type (Sunny, Cloudy, Rainy etc.)

The user will be asked to enter all of the above mentioned

context information and according to user’s input the

application will be able to determine the best place for

suggestion. This contextual information is stored as tree-like

decision graph model (fig. 2) so we have no difficulties to

implement decision making module.

 WildCAT framework use a syntax inspired by URIs to

denote elements in the context while being independent on

the actual implementation. A path that is widely used in

WildCAT can be used to reach any resource, attribute or all

the sub-resources or sub-attributes of a resource. Every path

can be syntactically valid but such a place may not exist. The

general syntax is root://path/to/resource#attribute. Different

examples are show in table 1.

Table 1: Examples how context information is stored with

WildCAT

Resource path Comment

self://Ohrid A resource

self://Ohrid/* All resources for Ohrid

resource

self://Ohrid/Summer/Noon
/Sunny#decision1

An attribute

self://Ohrid/Summer/Noon

/Sunny#*

All attributes for given

condition

As it is displayed on Figure 2, the contextual information is

organized as decision tree-like graph with six levels. The first

level is reserved for the root of the tree. Under the root are

placed all contextual information that are acquired from the

user’s input like location, season, time of day and weather

type. The last level is reserved for place suggestions that are

offered to the user to visit.

Figure 2: Decision tree context organization.

IV. PLACE DECISION MAKER (DEMO APPLICATION)

The demo application that we have developed called “Place

decision maker” is Java Swing application that uses WildCAT

as a context information store and processing framework.

When the application is started for the first time, all

context information is loaded using “DecisionRepository”

class.

Figure 3: Place decision maker class diagram

 !"

The 9th Conference for Informatics and Information Technology (CIIT 2012)

On figure 3 is shown class diagram of “Place decision

maker” demo application. Each of the contextual information

(location, season, timeOfDay, and weatherType) is

represented as an enumeration in our demo application and is

used to create decision conditions which are used in

“Decision repository” afterward. Decision repository keeps

track of all registered conditions in the application and the

decisions that correspond to them.
 All decision condition and its decisions are mapped into

tree graph using WildCAT framework. Using the WildCAT

framework we can easily investigate the graph build by this

framework and make suitable decisions (figure 4).

V. DECISION MAKING PROCESS AND USE-CASES

The decision making process is provided on tree-like graph

build by WildCAT framework (figure 4). As we can see on

figure 4, the graph has few levels in depth and each represents

different context information.

Figure 4: Part of context information build with WildCAT

 The first level is reserved for the one and only root node.

Every contaxt that is build with WildCAT should start with

root node. On the first level we keep information about

location context, on the second level we keep information

about season context. The third level is reserved for

contextual information about which time of the day when the

search is indicated. On the forth level we keep information

about the weather conditions where user is located. Finaly, on

the fifth level we have multiple dicesions that can be seleced

if all of the previously mentioned contextual information are
satisfied.

The user interface of “Place decision maker” application

(figure 5) is consisted of four combo boxes (one for each

mandatory context that the user should enter), a button that

perform reasoning process and a label where found results are

displayed. The user can change any of the contextual

information (figure 5) and search for suitable places for the

provided conditions.

Figure 5: Place decision maker application UI

 For example, the user can select following search

conditions:

· Location: Ohrid

· Season: Summer

· Time of day: Noon

· Weather condition: Sunny

The program will inspect the contextual graph using

WildCAT push mechanism and try to find suitable places for

provided condition. As it is shown on figure 5, the result will

be following five places: "St.Pantelejmon – Plaoshnik",

"Ohrid - Amphitheater", "King Samoil Fortress", "St. Sophia

Chirch" and "St.John Kaneo church".

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a demo application that use

context-aware framework to easy create and manipulate with

context information. We have explained how to use WildCAT

as context-aware framework for storing and managing context

information and shown a real usage of graph model for

keeping context. We will extend this demo application with

mobile version that will automatically acquire contextual

information from mobile device sensors and provide

suggestion to the user.

REFERENCES

[1] Dey, A.K. and Abowd, G.D. "Towards a better understanding of context

and context awareness". In Proceedings of the Workshop on the What, Who,

Where, When and How of Context-Awareness, ACM Press, New York

(2000)

[2] Henning Maass, “Location-aware mobile applications based on

directory services”. In Proceedings of the Third Annual ACM/IEEE

International Conference on Mobile Computing and Networking, pages 23-

33, Budapest, Hungary, September (1997)

[3] W3C Composite Capability/ Preference Profiles (CC/PP),

http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/

[4] Held A. Buchholz S. and Schil A. “Modeling of context

information for pervasive computing applications”. In

Proceedings of SCI 2002/ISAS (2002)

[5] User Agent Profile (UAProf) Specification, http://www.wapforum.org

[6] Chtcherbina E. and Franz M. “Peer-to-peer coordination framework

(p2pc): Enabler of mobile ad-hoc networking for medicine, business, and

entertainment”. In Proceedings of International Conference on Advances in

250

The 9th Conference for Informatics and Information Technology (CIIT 2012)

Infrastructure for Electronic Business, Education, Science, Medicine, and

Mobile Technologies on the Internet Italy, (2003)

[7] Henricksen K., Indulska J., and Rakotonirainy A. “Generating Context

Management Infrastructure from High-Level Context Models”. In Industrial

Track Proceedings of the 4th International Conference on Mobile Data

Management, Melbourne/Australia (2003)

[8] Halpin T. A. “Information Modeling and Relational Databases: From

Conceptual Analysis to Logical Design”. Morgan Kaufman Publishers, San

Francisco (2001)

[9] Bouzy B., and Cazenave T. “Using the Object Oriented Paradigm to

Model Context in Computer Go”. In Proceedings of Context’97 (Rio, Brazil,
1997)

[10] X.H. Wang, D.Q. Zhang, T. Gu, and H.K. Pung. “Ontology-Based

Context Modelling and Reasoning using OWL”. In Context Modelling and

Reasoning Workshop (2004)

[11] D. Preuveneers, J. v.d.Bergh, D. Wagelaar, A. Georges, P. Rigole, T.

Clerckx, Y. Berbers, K. Coninx, V. Jonckers, and K. De Bosschere.

“Towards an Extensible Context Ontology for Ambient Intelligence”. In 2nd

European Symposium on Ambient Intelligence (2004)

[12] S. R. Safavin and D. Landgrebe, “A survey of decision tree classifier

methodology,” IEEE Trans. Syst., Man, Cybern., vol. 21, no. 3, pp. 660–674,

Jul. 1991.
[13] T. Gu, H.K. Pung, and D.Q. Zhang, “A Service-Oriented Middleware

for Building Context-Aware Services”. Journal of Network and Computer

Applications (2005)
[14] Fahy P. and Clarke S. “CASS – a middleware for mobile context-aware

applications”, Workshop on Context Awareness, MobiSys (2004)
[15] Hofer T., Schwinger W., Pichler M., Leonhartsberger G. and Altmann

J. “Context-awareness on mobile devices – the hydrogen approach”,

Proceedings of the 36th Annual Hawaii International Conference on System

Sciences (2002)
[16] Hofer T., Schwinger W., Pichler M., Leonhartsberger G. and Altmann

J. “Context-awareness on mobile devices – the hydrogen approach”,

Proceedings of the 36th Annual Hawaii International Conference on System

Sciences (2002)

[17] Nguyen, D. (1998). Design patterns for data structures. In Proceedings

of the 29th SIGCSE Technical Symposium on CS Education. ACM SIGCSE

Bulletin, 30, 336–340.

 !"

