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Abstract: Simulation is the imitation of the operation of a real-world process or 
system over time. As systems become more and more complicated, computer 
simulation tends to be the most appropriate technique for predicting the behavior 
of a system or finding its optimal design. 

Analysis of discrete stochastic processes is one field where this method is ap-
plied. As these processes include a lot of random variables, a great attention must 
be paid to the analysis of the output of a simulation program. Here we take a look 
at some of the techniques developed for this purpose. 
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1. Introduction 
Simulation is the process of designing a mathematical or logical model of a real 
system and then conducting computer-based experiments with the model to de-
scribe, explain, and predict the behavior of the real system. 
In this text the simulation of discrete stochastic processes will be a basic concern. 
A process is discrete if changes in state occur only at discrete points in time, and 
it is stochastic if any random variables are present. For example, a queuing sys-
tem, where clients wait in queues to be served, is a discrete stochastic process. 
Changes occur when a client enters or leaves the system. The distribution of the 
inter-arrival time of the entrance of the clients is usually exponential, and the dis-
tribution of the serving time might be exponential, uniform, normal, etc. We 
might be interested in the parameters of the system, such as: the average time 
clients wait in queue, the fraction of the customers that wait, the average length 
of the queue, the probability that a client will be served (in case of finite queue), 
average idle time for a server etc. There are analytic models for most of the sim-
ple systems, but very often simulation is a necessary technique. 



32 Proceedings of the Second International Conference on Informatics and Information Technology 

 

2. Output analysis 
Discrete-event simulation models are different from most other types of models. 
Because a discrete-event simulation model brings together the confluence of 
many random variables, the output of the model is, itself, a random variable. The 
output of a simulation model can easily be misinterpreted, resulting in false con-
clusions about the system it represents. 
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Discrete-event systems (in fact all dynamic systems) can be categorized as being 
either terminating or nonterminating. A system is classified as terminating if the 
events that drive the system cease occurring at some point in time, while in non-
terminating systems the discrete events reoccur indefinitely. When analyzing the 
output of a simulation model, it is necessary to differentiate between data gath-
ered when the system was in a transient phase and when it was in steady state. 
The system is in steady state relative to state variable s when where s(t) is the 
state of the system at time t and Ps(t) is the probability that the system is in state s 
at time t. Otherwise, the system has not achieved steady state and is said to ex-
hibit transient behavior. 

3. Output analysis for terminating systems 
For the sample (xi, i=1,2,...,n)  
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It can be easily shown that if E(xi) = m for all i then E( X X) = m. In order that 
E(s2 ) = σ2 where σ2 = D(x i) (the variance of xi) it is necessary that each xi have a 
common expected value and all xi are independent. 
For terminating simulations, the most commonly used method of insuring that 
the observations xi are independent and have a common expected value is repli-
cation. During the course of each simulation, observations are made at desig-
nated points in time or upon the occurrence of designated events. 
For a simulation replicated R times, with K intermediate observations in each 
simulation let xij = be the j-th observation of the i-th replication, where i=1,2,...R 
and j=1,2,...K and let yi= be some overall performance measure during i-th repli-
cation. Then 
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For example, in the i-th simulation of a queuing system, we would measure the 
waiting time of an arriving customer at each of K different time points, xij, and 
Yi, the overall waiting time of all customers arriving during the simulation. We 
now have independent and unbiased estimates of the expected value and variance 
of the system's performance at K different points in time, as well as an unbiased 
estimate of the mean and variance of the overall performance measure. Once the 
mean and point estimators have been established using equations (4) through (7),  
we can set approximate confidence intervals for E(xij) and E(yi) using  
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where tα/2,(R-1) is the number satisfying that for a random variable T with t-
distribution and (R-1) degrees of freedom it holds  
 
P(-tα/2,(R-1) < T < tα/2,(R-1) ) = 1-α. 
 
The half width of the confidence interval is 
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R
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and indicated how accurately we have estimated the performance measure in 
question. 
Illustrative problem 1. Let us consider a simulation of the classic M|M|1|∝ queu-
ing system (one server, infinite queue, exponential distribution of the serving 
time and the inter-arriving time). In this simulation we assume that the arrival 
rate is 60 arrivals per hour and the mean service time is 48 seconds, resulting in a 
traffic intensity of 0.8. 
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Table 1 shows xij, the sample waiting times for the customers, arriving immedi-
ately after minute 10, 20, ..., 80, the average waiting times for the customers ar-
riving at these points of time for 25 replications and the appropriate standard de-
viations of the sample (it is the output of the appropriate program). 
In practice the system should be simulated hundreds of times before drawing any 
firm conclusions about the mean and the variance of the waiting times, or even 
the number of simulations needed to set confidence intervals with the intended 
half width. As a first guess of the number of simulations required to establish 
reasonable confidence intervals on mean waiting times, let us estimate the num-
ber of observations required to set a 95 percent confidence interval, with a half 
width of 1/6 minutes, for a customer arriving immediately after the 10-th minute. 
Letting the sample variance act as an estimate for the true variance of waiting 
times, then from equation (10) the half width of the confidence interval is I = 
1.96s1/√R and solving for R we have R=(1.96s/I)2=830. 
Upon completing these 830 simulations we would most likely have a more accu-
rate estimate of the true standard deviation, leading to more replications of the 
simulation. In fact, since the true standard deviation of the waiting time is ap-
proximately 130, to set the 95 confidence interval on the mean time a customer 
waits, at a half width of 1/6 minutes, we would in actuality need to simulate the 
system approximately 600 times. It should be pointed out that we generally do 
not have this kind of information on the variance of the property being estimated, 
since in most simulation projects good analytic models are not available. 

4. Output analysis for nonterminating systems 
When analyzing the output of simulation models of nonterminating systems, we 
must deal with several problems: 
Initial Condition Bias. The data collected during the early part of the simulation 
may be biased by the initial state of the system. The behavior of the system dur-
ing this early phase of the simulation may be irrelevant to the questions we ex-
pect the model to answer. 
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Table 1. Simulation of M/M/1/∝ system 

Covariance Between Samples. Groups or sets of data gathered during the simula-
tion are generally not independent of one another. Therefore the variance esti-
mates will be biased. 
Run length. Although the system itself may be nonterminating, the simulation of 
the system must eventually? be terminated. If we terminate the system too early, 
we may not have a representative simulation. 
We will present a method for analyzing the output of a simulation model of a 
nonterminating system. We will demonstrate the application of this method, us-
ing the output of a simulation model of a blood bank inventory system. 
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Illustrative problem 2. A blood bank maintains an inventory of whole blood of a 
specific type. The blood is collected from voluntary donors, who come to the 
blood bank randomly, at the mean rate of two donors per day. Each donor con-
tributes exactly one unit of blood (1 pint). The mean number of blood recipients 
is one per day and is also randomly distributed. Each recipient will request at 
least one unit of blood. The number of units requested after the first unit, is Pois-
son distributed with a mean of 1.0. Blood has a limited storage life and any blood 
that is older than 21 days cannot be used. The blood bank does not place an up-
per limit on the number of units kept in inventory, but lets the supply rise and fall 
by the random occurrence of donor and recipients. If the supply falls to zero, 
blood is obtained from a second source but at a considerable expense. The simu-
lation model would estimate the average blood inventory, the mean number of 
units that become outdated each year, and the mean number of blood units that 
must be obtained from the second source each year.  

5. The method of replication 
For nonterminating simulations we must avoid (or at least minimize) the effect of 
the initial conditions on the output of the model. The most common way of doing 
it is to discard the observations gathered during the early phase of the simulation 
model and use only data gathered when the system has reached a steady-state 
condition. Here we must decide when steady-state conditions begin. 
Illustrative problem 3. We run the blood bank simulation model for 1000 days 
(approximately three years) recording the average inventory every 100 days. 
From 25 replications it appears that after 500 days the average inventory of blood 
becomes approximately constant, that is, the system should be simulated for 
about 500 days before collecting statistics to estimate the steady-state properties 
of the blood bank. Based on these exploratory simulations, the simulation is now 
replicated 20 times, (run length of 2000 days) discarding statistics gathered dur-
ing the first 500 days, and then collecting statistics during the next 1500 days. 
Table 2 shows the results of these replications. 
Using the results of the replications we can set a 95 percent confidence interval 
on the average number of blood units on hand as well as the expected number of 
units short and outdated each year. For illustration purposes we will set a 95 per-
cent interval on the average number of units short per year. Based on a 1500-day 
simulation an unbiased estimate of the mean number of units short per year is 
Average short per year == (365/1500) Average short per 1500 days, and since 
Variance (Shortage/Year) = (365/1500)2 Variance (Shortage/1500 days) we will 
estimate the variance of the annual number of units short as s2

365 = 
(365/1500)2s2

1500. 
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If we assume that the distribution of the number of units short per year is normal, 
we can set a 95 percent confidence interval on units short per year using 

 
5.17

31

/

/

=
=

yearshortage

yearshortage

S
X

 

 .95.0]
20

5.17093.231[or  
2

short) units (annual =±=EP  

 95.0][ )1(,2/short) units annual( =±= −
n
stXEP nα  

In addition, we will mention three more techniques for analyzing the output of 
nonterminating systems: the method of batch means, autocorrelation methods 
and the regenerative method. 

 

Table 2. Simulation of the blood bank system 



38 Proceedings of the Second International Conference on Informatics and Information Technology 

 

6. Conclusion 
The output of a simulation model requires careful analysis. Classical statistical 
techniques seldom directly apply. The observations collected during the simula-
tion are often not independent nor time invariant. When analyzing the output of 
simulation models we must distinguish between terminating and nonterminating 
simulations, and between simulations that reach a steady-state condition versus 
simulation in which a steady-state condition cannot be achieved. 
For terminating simulations, the model can be run a number of times, with each 
run being an independent observation. For nonterminating simulation, we must 
let the model warm up and pass through any transient conditions. We then collect 
the data in a manner that will allow us to establish point and interval estimates on 
the measures of performance needed to answer our questions concerning the sys-
tem being simulated.  
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