
The 7th International Conference for Informatics and Information Technology (CIIT 2010)

©2010 Institute of Informatics.

OVERVIEW OF MODERN FILE SYSTEMS

Boban Joksimoski Suzana Loskovska

Faculty of Electrical Engineering

and Information Technology

Faculty of Electrical Engineering

and Information Technology
Skopje, Republic of Macedonia Skopje, Republic of Macedonia

ABSTRACT

Data storage has always been of keen interest to the computer

society. There have been remarkable ideas and

implementation for overcoming the problems in data storage.

New file systems, like ZFS and Btrfs, are challenging the old
ideas and introduce new concepts for storage, regardless of

the underlying hardware technology. Dynamical expansion of

storage, easy backup, fast snapshots, cloning, mirroring and

preventing data corruption will be key issues that will shape

file systems in the future. An overview of modern file system

is presented in this paper.

I. INTRODUCTION

We live in an age where the most valuable possession is
information. Every byte of data is considered important and

needs to be stored for further use. Thus, storage of data is

important in today's technological society. From such

demands, it is expected that the amount of data that needs to

be stored, is growing exponentially. The importance of

keeping the data safe so far surpasses every other aspect of

functioning. Techniques used for storing data are many and

every file system has purpose and field where it excels.
At the beginning of modern computing, every major

computer system had its own file system. Today the trend is

to allow the users to choose their own file system, of course if

it's supported by the operating system. Lately, open source

software (OSS) has gained momentum and its flagship

products are becoming more accepted for widespread use.

Companies that are leading the technological design (IBM®,

Oracle®, Sun Microsystems® (now under Oracle), Red
Hat®, etc), have learned to embrace an use the OSS for their

own purpose. And almost all of them have developed or

supported some kind of file system that is being used in open

source software. This paper is a review of such efforts, and

the next major file systems that should be used.

II. BACKGROUND

File systems have a long history and have been developing

for a long time. We could separate file systems in many
categories, developed for special purposes, for special

hardware, etc. With many different storage types, like Solid

State Drives (SSD) and RAID, file systems are being revised

and improvements are being made to gain maximum

performance while maintaining reliability. In fact,

performance is not the key issue, but the reliability of the

data. A lot of techniques were devised to keep the reliability

of the data, and a lot of file systems support them. These
techniques vary from logs [1], journals [2], checksums, etc.

Depending of the underlying purpose, file systems can be

categorized as disk file systems, network file systems and

special purpose file systems. The interest of this article is the

advanced disk file systems. We'll keep this paper close to disk

file systems, but with a thought that network and special

purpose file systems are of immense interest for future file

systems.
The most commonly used disk file systems are XFS[3],

ReiserFS, Ext family [4][5], NTFS, FAT family, HFS+, VxFS

and so on. Almost every one of them is implemented under

some license that allows it to be used in Unix-like operating

system (distributions based on the GNU Linux[6], different

BSD variants and/or proprietary Unix systems). All of them

are well established, but lately a lot of buzz is being created

about new type of file system that allows advanced
techniques for scalability and reliability. One of the new file

system announced is called btrfs [7] (B-Tree FS, or Butter

FS) and is catching the interest of the developers. The file

system was announced 2007 and it’s an answer to Sun

Microsystems® ZFS™ [8][9] (initially Zettabyte File

System), introduced in 2005.

III. FEATURES OF A MODERN FILE SYSTEM

The computer industry has walked a long way from the
primitive file systems that were developed for early

computers. Now we can't imagine a disk file system that

doesn't support hierarchy, security (either capability based

security [10] of access list security - ACL), metadata

information and data recovery. With the technology

breakthroughs and advances made, new modern file systems

should extend the maximum storage size they provide, should

allow easy data encryption and advanced management of the
file system. Advanced users should have more control over

the properties of the file system and there should be minimum

maintenance for the data, easy backup, strategies for

snapshots, and so on. The file system must satisfy future

demands in file size and volume size. As a introduction to

both file systems, they provide maximum file size and

volume size of 16 EiB (1 exbibyte = 260 bytes), with 264 and

248 maximum number of files for Btrfs and ZFS respectively.
To see how much that is, the total number of atoms in the

earth's crust is approximately about 260.

IV. OVERVIEW OF ORACLE (SUN) ZFS™

The developers at Sun Microsystems have redesigned the

whole working process and idea of a file system. The source

code is published under Sun's Common Development and

Distribution License (CDDL). Sun's ZFS should not be

mistaken for IBM's zFS.
Unlike any other file system, ZFS is designed from 7 different

layers that interact one with another [18].

The whole concept of disk drives and partitions is obsolete

and it is replaced by so called “storage pools” or “zpools” [8].

 !

The 7th International Conference for Informatics and Information Technology (CIIT 2010)

Zpools provide easy method for adding more storage and the

user isn't aware of the number of devices that are being used.

All storage from all devices is viewed as a single storage unit

(or pool) (Fig. 1). Pools are implemented to use virtual

devices (vdevs) [9] thus making typical volumes unnecessary.

A concept of virtual volume is present but mainly to provide

export of the pool onto a disk device. Creating and managing

zpool is relatively easy [11].

Figure 1: Storage pools and the ZFS file system

Another important feature is the usage of COW (Copy on
Write) technique [12]. The technique is implemented in

several other modern file systems (VxFS, Ext3, Btrfs) and

manages concurrent access to the data. Every time when the

data is modified, it is written to a new location. After the

writhing is done, the inode pointers are updated so to the

modified data (Fig. 2). Copy on Write provides mechanism

for easy creation of file system snapshots (read only

structures) and clones (read and write structures). And
because of the COW technique, creating of a snapshot is in

constant time – O(1), but deleting and incrementing a

snapshot takes longer time – O(Δ).

Figure 2: The Copy on Write (COW) Process

As a consequence of the COW process, the data on the disk is

always valid, making administration and maintenance of the

file system very easy. ZFS has a pipelined I/O engine that

provides score-boarding, priority, deadline scheduling, out-of-

order issue and I/O aggregation of the drives bandwidth. Also

all the data is check summed and live disk scrubbed to

prevent bit rots, phantom writes, misdirected reads and writes,

DMA parity errors, driver bugs and accidental overwrite.

In addition to the data reliability, a non-standard RAID

systems have been developed, dubbed RAID-Z, that optimize

RAID-5 and RAID-6 for use with ZFS. Mirroring is also

supported.

Security is implemented using NFSv4 Access Lists [13],
making it incompatible with POSIX Access List present in

most UNIX successors. Also, there is a native support for

compression and encryption.

V. OVERVIEW OF BTRFS™

Btrfs was first announced in 2007, and its initial idea is to
make it GNU GPL compatible file system that could rival the

ZFS features. The main developer of Btrfs is Cris Mason, and

main sponsor of the project is Oracle. It is not completed but

a lot of effort is made to make it stable. As of Linux 2.6.29 it

is part of the Linux Kernel as an unstable feature

The whole idea of Btrfs is build around B-Trees and the

implementation of COW on B-trees [15]. Actually all

structures present in a Btrfs are stored using B-trees (like
inodes, files, directory entries, block pointers). Unlike ZFS,

Btrfs is keeping large data chunks as extents and allows

keeping the small data chunks in the same block as the

metadata, making more efficient use of the available disk

space (Fig 3). It support dynamic inode allocation, creating

writable snapshots (clones), creation of subvolumes, striping

and check summing of the data, fast file system checking,

compression, defragmentation and mirroring. As we can see,
almost all of the features that are supported by ZFS are

implemented in Btrfs. Btrfs also has a native support for

RAID 0, RAID 1, RAID 5, RAID 6 and RAID 10.

Figure 3: Simplified graph of the disk layout in Btrfs

Security is based on ACL , but with the difference that they

are POSIX compatible.

The compact design of Btrfs is somehow “borrowed” from

ReiserFS, but it is expected that Btrfs will be more stable. The

features of Btrfs that are very similar to those of ZFS, but

have completely different implementation (for comparison
see 16 and 18).

 !

The 7th International Conference for Informatics and Information Technology (CIIT 2010)

VI. ISSUES WITH BOTH FILE SYSTEMS

The concepts that ZFS implemented were strong in favour of

using it as the next everyday file system. But keeping ZFS as

a technology under one company, made the other computer

industry giants to react (it is surprising how easily big

companies are scared). Also, distribution under the CDDL

license made implementation for the Linux Systems hard,

mainly because the Linux kernel is licensed under GNU
General Public License and implementation of source code

with CDDL is against GPL rules of compliance. A

workaround is to implement ZFS in user space with the fuse

library [14], but loss in performance would be the main

drawback. Aside from Linux, ZFS was successfully ported to

Open Solaris® and FreeBSD® [13], with efforts made for

porting on Mac OS X® and NetBSD®.

With Linux being most widespread open source operating
system, Btrfs is surely to be the biggest competitor to ZFS.

The usage of these advanced file systems will shape data

management in years to come.

When talking about file systems, there is the problem of

networking and making the file system distributed. Both file

system do not support native distribution, but ongoing

projects are set to implement those features. Sun

Microsystems bought Cluster File Systems in 2007, a key
player in distributed file systems with their Lustre object

based distributed file system. Since their acquisition, there

was announcement of porting ZFS to work with Lustre, but

still there are no significant results. Oracle on the other hand

announced its own networking protocol, Coherent Remote

File System (CRFS) [17], also distributed under GPL,

specially designed for the Btrfs file system. CRFS is in its

early stages of development, and we cannot expect any
significant release in a year.

ZFS has implemented the role of Logical volume

management (LVM) in its design, while Btrfs is driven by

more common ideas and does not implement virtual devices

and pools. In addition, it is currently impossible to reduce the

available size of ZFS pool or remove a virtual device. These

issues are not a problem with Btrfs. ZFS, unlike Btrfs, does

not require the use of file system check (fsck), thus making
the system easier to administer. ZFS is not efficient as Btrfs

in disk usage, providing bigger overhead and disk head

seeking. Btrfs has a native support for Solid State Drives,

making use of techniques like wear levelling. Engineers of

ZFS have implemented hybrid storage model, consisting of

SSDs and typical hard disk drives, for better performance.

Performance of both file systems is disputable. Benchmarks

were given for Btrfs and it is less compatible in speed with all
used file systems. Being still in beta, it is believable that

performance will increase as the project matures. ZFS on the

other hand have made improvements and its benchmarks are

officially available [19], but are made by the company that

created it. Both file systems are generally slower than their

rivals, but that an easy trade-off for the features given.

A last, a final concern of the open source developer

community is the acquisition of Sun Microsystems by Oracle,
in April 2009. Now Oracle has a leading role in both file

systems, thus making people nervous about the future of the

projects. Btrfs main developer as a response added that Oracle

will not drop support for its file system. ZFS has the

advantage of being developed longer, and already

commercially distributed and deployed in working

environments.

VII. COMPARISON WITH OTHER FILE SYSTEMS

Other file systems are not the focus of this paper, but it is

good to see where the competition is. The most popular file
systems were mentioned before, and they make use of

standard techniques to make user data secure. Ext3 and Ext4

implement journaling and provide convenient ways of data

storing. NTFS provides partially implemented extents. All of

them rely on disks and partitions, a constraint that is ignored

in Btrfs and ZFS. Also Btrfs and ZFS are the only one to

provide fault tolerance. Speed is traded for better overall

system expandability. The only file system that approaches
some of the features offered by these two is the VxFS from

Veritas.

VIII. CONCLUSION

File systems are a must in modern computers. ZFS and Btrfs

have implemented new and innovative design ideas and

techniques to make user data more secure and available. They

represent the new generation of file systems that should

power the server or desktop computers and even grid
computers (if the appropriate projects are successful). All

together, they provide a nice overview of how innovative

thinking can refine or rewrite old ideas.

REFERENCES

[1] M. Rosenblum and J. K. Ousterhout: The Design and

Implementation of a Log-Structured File System, ACM

Transactions on Computer Systems (TOCS), Vol 10, Issue 1,
Feb 1992, pp. 26 – 52.

[2] C. Swenson, R. Phillips and S. Shenoi: File System

Journal Forensics, Advances in Digital Forensics III, Springer

2007, pp. 231-244.

[3] J. Mostek, W. Earl et al.: Porting the SGI XFS File

System to Linux, USENIX Annual Technical Conference,

2000.

[4] T. Ts'o: The Linux ext2/3/4 Filesystem: Past, Present, and
Future, IBM Linux Technology Center, 2006

[5] S. C. Tweede: Journaling the Linux ext2fs Filesystem,

The Fourth Annual Linux Expo, 1998

[6] S. French: Around the Linux File System World in 45

minutes, Proceedings of the Linux Symposium, Vol 1, 2008,

pp. 129-135

[7] C. Mason: “The Btrfs Filesystem”, LinuxConf Europe,

2007.s
[8] ”ZFS On-Disk Specification” sun.com, retreived on

2009-05-12.

http://opensolaris.org/os/community/zfs/docs/ondiskformat08

22.pdf

[9] “ZFS: The Last Word In File Systems” sun.com,

retreived on 2009-05-12.

http://opensolaris.org/os/community/zfs/docs/zfs_last.pdf

 !

The 7th International Conference for Informatics and Information Technology (CIIT 2010)

[10] H. M. Levy: Capability-Based Computer Systems,

Butterworth-Heineman, Newton, MA, USA, 1984

[11] H. J. Foxwell and C. Tran: The ZFS File System, Pro

OpenSolaris, Apress, 2009, pp. 102-124

[12] F. J. T. Fábrega, J. D. Guttman: Copy on Write, 1995.

[13] P. J. Dawidek and M. K. McKusick: Porting the Solaris

ZFS File System to the FreeBSD Operating System,

AsiaBSDCon, Vol 31, June 2007, pp. 19-24
[14] “FUSE Design Document” Opensolaris.org, retrieved

on 2009-08-09,

http://cn.opensolaris.org/os/project/fuse/Documentation/FUS

E_Design_Doc_0_6.pdf.

[15] O. Rodeh: B-trees, Shadowing, and Clones, IBM Haifa.

http://www.cs.tau.ac.il/~ohadrode/papers/btree_TOS.pdf

[16] А. Пешеходов :Architecture and Implementation of

btrfs”, retreived on 2009-07-01. (in Russian).
http://www.filesystems.nm.ru/my/btrfs.pdf

[17] “Project CRFS” oracle.com retrieved on 2009-08-08.

http://oss.oracle.com/projects/crfs/

[18] А. Пешеходов :Architecture of ZFS”, retreived on 2009-

07-01. (in Russian).

 http://lug.yaroslavl.ru/archive/files/zfs_arch.pdf

[19]http://www.sun.com/software/solaris/reference_resources

.jsp#wp, retrieved on 2009-08-09

 !

