
The 7th International Conference for Informatics and Information Technology (CIIT 2010)

©2010 Institute of Informatics.

INTERPRETATION OF OBJECT-ORINTED QUALITY MODELS

Daniela Boshnakoska

Software Developer at Innovaworks

Skopje, Macedonia

daniela.bosnakoska@gmail.com

KEYWORDS

object-oriented metrics, object-oriented quality models,

MOOSE model, Li and Henry metrics, MOOD model,

QMOOD model.

ABSTRACT

Although the object-oriented metrics are newer in the

measurement theory, they have proven as useful predictors of

good system design. Object-oriented metrics have been

grouped to minimal sets to assess quality of the Object-

oriented systems, known as object-oriented quality models.

There are couples of proposed sets, which have been

validated, empirically tested and applied on the real system.

I. INTRODUCTION

Object oriented quality models estimate object-oriented

designs. They work by establishing relationships between

desirable design attributes or predicting estimations about the

quality of the components. The aim of quality models is to

assess quality attributes such as maintainability. This can be

gained by establishing relationships between quality

characteristics and the metrics computed from object-oriented

diagrams. If appropriately used, these models can provide

significant reduction in costs of the overall implementation

process and improvements in the quality of the final product.

This work is focused on introduction and basic interpretation

of the main quality models.

II. SOFTWARE MEASUREMENT

All industry branches use measurements in order to validate

their improvements. Measurements are used extensively in

most areas and productions to estimate costs, calibrate

equipment, assess quality or monitor inventories. In software

industry, as technology is changing per daily basis, decisions

are even hard to make. Therefore guidelines are needed, so

the managers and practitioners can make these decisions, plan

and schedule activities or allocate recourses. Measuring

software is one of the most valuable guidelines.

Software Measurement is a quantified attribute of a

characteristic of the software product, or the software process.

The main purpose of measures in the software industry is to

improve the overall software process, assisting the planning

activities, control of design, assessing the quality of the:

design model, testing scenarios and coding.

Software metrics provide information so people can make

informed decisions and intelligent choices. Software metric is

a measurement scale and method to determine the value of

an indicator of a certain software product. Software metric

has been defined as a measure of some property of a piece of

software or its specification. The range of the software

metrics is wide, and they can be further categorized in

meaningful categories. As part of their wide categorization,

we can separate design and code metrics.

Design and Code metrics can be more classified according to

the paradigm they adhere to. Such classification is to:

procedural or object-oriented metrics. Object-oriented metrics

reflect the impact of using the object oriented mechanisms

such as inheritance, association, aggregation, polymorphism

and message passing. They could be further categorized

according the object oriented property they measure.

III. OBJECT-ORIENTED METRICS

The benefits of object oriented software development are now

widely recognized. Object-oriented technology in software

industry has created new challenges for monitoring,

controlling and improving the ways to develop and maintain

software. Object-oriented development requires different

approach from traditional functional decomposition and data

flow. Object-oriented programming claims faster

development pace and higher quality of the software.

Designing object-oriented system is focused on objects and

designers use this approach because it is a faster development

process and has high reusable features; increases design

quality.

In object-oriented environment the metrics that will be used

does not only depend on the code structure but also on several

high-level features that easily can discriminate among

different levels of complexity. Object-oriented metrics have

been introduced as a way to measure the quality of the object-

oriented design. These metrics focus on measurements that

are applied to class and design characteristic. They help

designers early in the development phase to make changes to

reduce object complexity and improve the continuing

capability of software. Such metrics can be used to identify

the primary critical constructs of the design and to select

metrics that evaluate those areas. Object-oriented metrics

provide valuable information to the developers and managers.

 !!

The 7th International Conference for Informatics and Information Technology (CIIT 2010)

There are at least three ways in which object-oriented metrics

can be used: quality estimation, risk management and

estimating system testability. Quality estimation means to

build estimation model from the gathered historical data. In

practice, quality estimation is gained either by estimating

reliability (number of defects) or maintainability (change

effort). Risk management is concerned in finding the

potentially problematic classes as early as possible. Process

and product metrics can help both managing activities

(scheduling, costing, staffing and controlling) and engineering

activities (analyzing, designing, coding, documenting and

testing).

As previously stated, the structure of the software design is

where metrics play an important role. Object-oriented metrics

can evaluate the impact of object-oriented design on software

quality characteristics such as defect density and rework.

Figure 1 Object-oriented characteristics and quality attributes

Data obtained from experiments shows that OO mechanisms

such as inheritance, polymorphism, information hiding and

coupling, can influence quality characteristics like reliability

and maintainability. Inspecting the impact of OO design in

quality attributes, infer that, in fact, the design alternatives

may have a strong influence of reusing quality. The impact of

other quality attributes such as efficiency, portability,

usability and functionality must also be assessed. Many

experimental validations have been introduced during the

years performed on information systems to conclude that OO

metrics can be used to identify fault prone classes.

One possible means to validate metrics is to conduct

statistical analyses of the metrics and measures of system

maintainability. Software maintenance is one of the most

difficult and expensive tasks in the software development

process. Metrics, especially those who measure the inner-

connectivity of system components have been shown to have

an impact on software system maintainability.

IV. OBJECT-ORIENTED QUALITY MODELS

Object-oriented quality models estimate OO designs. They

consist of four parts: Objectives, Metrics, Relationships and

Thresholds. A significant number of OO metrics have been

proposed: Briand, 1999, 2000; BritoeAbreu, 1994; Bucci,

1998; Chidamber, 1991, 1998; Fioravanti, 1998a, 1998c,

2001a, 2001b; Halstead, 1977; Henderson-Sellers, 1994;

Kim, 1997; Li, 1993; Thomas, 1989.

A. MOOSE (C.K metric suite)

Figure 2 C.K Metric suite

Chidamber and Kemerer’s metric suite for OO design is

the deepest research in the OO metric investigation. This

metric suite tells whether developers are following object

oriented principles in their design. CK suite has been defined

with the aim to assess the software development process as

seen by expert object-oriented developers. CK metrics have

developed significant interest and are currently the most well

known suite of measurements for OO software [10].

C.K. metric suite consists of six metrics that assess different

characteristics of the OOD:

 !"

The 7th International Conference for Informatics and Information Technology (CIIT 2010)

WMC (Weighted Method per Class) assesses complexity of a

class through aggregating complexity measure of its methods.

When WMC is measured after the design phase and before

implementation phase it has to be based on the methods’

attribute complexity. If methods complexities are taken as

equal, WMC can be taught as number of methods in a class

and then considered as the measure of size and not

complexity. It is difficult to implement WMC as complexity

metric since not all of the methods are accessible within the

class hierarchy due to inheritance. When we are indicating the

number of methods with WMC we are giving prediction of

the time and effort required in order to develop and maintain

the class. Larger values for WMC mean we have greater

number of methods that has greater impact of the children

since they inherit the methods from the parent class. Classes

with large number of methods are limited for reuse because

they usually are application specific. WMC can also be used

to estimate the usability and reusability of the class.

As the experiment s and statics show, low WMC indicates

greater polymorphism in class, and high WMC indicates more

complexity in the class.

DIT (Depth of the Inheritance Tree) assesses how deep a class

in a class hierarchy is. The metric assess potential reuse of a

class and its probable ease of maintenance. Classes that have

smaller DIT indicate that are more general/abstract classes

and have much potential for reuse. Classes that are deep into

the hierarchy are difficult to maintain. They inherit greater

number of methods which makes them more complex, hard to

test and to predict their behavior. In deep inheritance trees

more methods within a class are involved making the design

more complex. The deeper a particular class is in the

hierarchy, has greater potential reuse of inherited metrics. If

the sub-classes asses the inherited properties from the super-

class without using the methods defined in the super class, the

encapsulation of the super class is violated. When calculating

this value in languages that allow multiple inheritances, the

longest path is usually taken. Large DIT is also related to

understandability and testability.

NOC (Number of children) measures the number of classes

associated with given class using the inheritance relationship.

It could be used to assess the potential influence a class has

on the overall design. Classes with many children are

considered as bad design habit. NOC can be considered as

measure on the impact of a class in the overall system design.

Greater number of children indicates improper abstraction of

the parent and can be considered as misuse of inheritance and

sub- classing. On the other hand, the greater number of

children, the greater reuse since inheritance is a form of reuse.

The number of children gives an idea of the potential

influence a class has on the overall design. Classes with large

number of children require more testing. We expect that

numerous children introduce more complexity into the class

design.

CBO (Coupling between classes) points to the number of

other classes to which a given class is coupled. CBO is

measured by counting the number of distinct non-inheritance

related class hierarchies on which a class depends. One class

is coupled to another if it uses its attributes or methods. CBO

is beneficial in judging how complex the testing of various

parts of the design is likely to be. Modular and encapsulated

design should have low CBO, indicating that the class is more

independent and easier to test or reuse. The more independent

a class is the easier is to use it in another application. The

larger number of couplings increases the sensitivity for

change and maintenance. Strong couplings complicate the

system since a class is harder to understand, change or

correct. Systems designed with weakest possible coupling

have reduced complexity and are easier to build and maintain.

Measuring couplings can give basic insight how difficult

testing is likely to be.

RFC (Response for a class) is defined as a count of the set of

methods that can be potentially executed in response to a

message received by an instance of the class. When

calculating RFC all methods accessible within the class

hierarchy are taken in consideration. Measures prove that

RFC metric can be considered as complexity indicator, but

can also represent the amount of communication with other

classes. The larger the number of methods that can be

invoked from a class the greater is its complexity. If a large

number of methods can be invoked as response, testing and

debugging the class becomes more complicated and it

requires a greater level of understanding on the part of the

tester, and it enlarges the testing time.As the results show and

from the experiments provided, classes with large value for

RFC indicates that the class is more complex and harder to

maintain.

LCOM (Lack of cohesion in methods) is the difference

between the number of methods whose similarity and the

number of methods whose similarity is not zero. Similarity is

the number of attributes used in common. Low value for

LCOM indicates high cohesiveness, and vice versa. High

LCOM means that the class should be split. Highly cohesive

modules should stay alone because high cohesion indicates

good class division. Lack of cohesion increases complexity,

and complex development is more error prone. In order to

improve the design, good practice is to subdivide low

cohesion classes to increase the cohesiveness.

Studies on this metric suite have shown that they give insight

beyond the traditional size metrics and that high value of the

CK metrics correlate with: Lower productivity; High effort to

reuse classes; High effort to design classes; Difficulties in

implementing classes; Number of maintenance changes;

Number of faulty classes; Faults; User reported problems.

B. Validation studies and examples

Chidamber and Kemerer’s work is the most used in validation

experiments and tests. One of these experiments was

 !"

The 7th International Conference for Informatics and Information Technology (CIIT 2010)

performed as indication of fault-prone classes using

statistical distributions and analysis using logistic

regression. Logistic regression is a classification technique

used in many experimental sciences based on maximum

likelihood estimation. To evaluate whether the CK metrics are

useful for predicting the probability of faulty classes, Basili

and his colleagues designed and conducted empirical study at

the x. The study involved students randomly grouped in 8

groups. Each team was responsible for developing medium

sized management information system using the Waterfall

management model. Testing phase was accomplished by an

independent group of experienced software professionals. The

analysis of six metrics have resulted that [7]:

WMC was shown to be somewhat important; for new and UI

classes the results are much better. As expected the larger

WMC, the larger the probability of fault detection.

DIT was shown to be very significant overall. As expected,

defect detection is more probable with larger DIT values.

Better results showed new and extensively modified classes.

RFC was shown to be very significant overall. Predictably,

the larger the RFC, the larger is the probability of defect

detection. Reasons are believed to be the same as WMC for

new classes, and UI classes show a distribution which is

significantly different from that of DB classes.

NOC appeared to be very significant, which is opposite to

what was expected. The larger is the NOC; the lower is the

probability of defect detection. This can be explained by the

fact that most classes do not have more than one child and

reuse classes have some larger value for NOC. Since we have

observed that reuse was a significant factor in fault density,

this explains why large NOC classes are less fault-prone.

LCOM was shown to be insignificant in all classes. This

comes out directly from its definition where LCOM is 0 when

the number of class pairs sharing variable instances is larger

than that of the ones not sharing any instances.

CBO is significant and more particularly so for UI classes. No

satisfactory explanation could be found for differences

between UI and DB classes.

It is important that various metrics have different units. Most

importantly, besides NOC, all metrics appear to have a very

stable impact across various categories of classes. It has been

also shown that code metrics appear to be somewhat poorer

indicator of class fault proneness and OO metrics are better.

They have shown that Chidamber and Kemerers OO metric

suite seem to be better predictors than the best set of

traditional code metrics provided on our data set.

This validation study provides positive confirmation of the

value of CK metrics. The authors however caution that

several factors may limit the generality of the results. These

factors include: small project sizes, limited conceptual

complexity, and because the testing suite was performed on

student projects.

In 1997 Chidamber, Kemerer and Darcy applied the

metric suite on three financial applications and assessed

the usefulness of the metrics from a managerial

perspective [16]. The systems were developed by single

company and used by financial traders to assist in buying,

selling, recording and analysis of various financial

instruments. At first the researchers noted small values for

DIT and NOC indicating that developers were not taking

advantage of the inheritance reuse features in OO design. It

was also noted that WMC, RFC and CBO were highly

correlated. This finding was opposite from the previous

framework were Basili stated that all six metrics was found to

be relatively independent. The main objective from this

research was to explore the CK suite to managerial variables

such as productivity, reusability and design effort. In this

consideration, productivity was calculated as size divided by

the number of hours required. The interpretation of the

gathered statistics is that high values of CBO and LCOM

were associated with lower productivity, higher effort to

make class reusable and greater design effort. This finding is

significant because it reflects the strength of the underlying

concepts of coupling and cohesion.

In 1999, Rosenberg, Stapko and Gallo regarding to the

metrics used at the NASA Software Assurance Technology

Center (SATC) recommended the CK metric suite

extended with 3 traditional metrics adopted for an object

oriented environment (Cyclomatic Complexity, Size

measuring the lines of code and Comment Percentage) [11].

These authors also used the metrics to point classes with

potential problems. Measuring the results, they are giving

guidelines that can help developers to improve quality of the

programs.

There is a trade off with many of the metrics, such as with

DIT high values that can indicate maintainability complexity,

but is also an indicator of increased reuse. High value for

NOC will increase the testing effort but will also accompany

increased the extent of reuse efficiency. As their summary

conclusion at that time, is that there are no clear interpretation

guidelines for these metrics although there are guidelines

based on common sense and experience.

 !"

The 7th International Conference for Informatics and Information Technology (CIIT 2010)

C. Evaluation on C.K. metric suite

Figure 3 Example 1 for evaluating C.K Metric Suite

Figure 4 Example 2 for evaluating C.K Metric Suite

Figure 5 Example 3 for evaluating C.K Metric Suite

WMC - for Clothing department = 1

for Appliance department = 4 (Figure 1)

Used basic WMC calculation: count of methods implemented

within a class.

RFC - for Store Department = 8

(Figure 1)

Used: number of methods that can be invoked in response to a

message. There are 3 messages that can be invoked by itself,

one by Clothing and 4 by Appliances class.

LCOM - High lack of cohesion

(Figure 2)

There are few common methods among the objects. Auto

needs PartsOrdering() but not FragranceDemo(). On the other

hand, Cosmetics need FragranceDemo() and not

PartsOrdering(). Such design implies that further abstraction

is required, introducing child classes.

CBO - High coupling (Figure 3)

Jackets and Slacks have the same attributes and methods.

These means that changes in the Purchase method has to be

done in multiple places.

DIT - for Store Department = 0

for Clothing = 1 (Figure 1)

Store Department is the root class; on the other hand,

Clothing has one ancestor.

NOC - for Store Department = 2

for Clothing = 0 (Figure 1)

Store Department has two subclasses, and Clothing is the leaf

node in the tree structure.

Although is the most used and well known model, there are

improvements suggested for this set so it can be complete and

can cover situations that were not taken into consideration,

when the set was proposed [8]. Some misunderstandings exist

when we try to evaluate the set in certain situations:

WMC – was defined as measure of complexity of methods

within a class. What the author missed because of

generalization purposes and the ability to use this metric in

multiple contexts, is to give well formed definition of

complexity.

NOC – initially this metric was set to measure direct

successors and present measure of the level of reuse,

possibility of improper abstraction and the level of testing a

class needs [5].

Figure 6 Example 4 for evaluating C.K Metric Suite

In the given scenario, NOC will result with measure of 3

suggesting limited reuse and less testing for the Class 1. As

we can observe, Class 3 has 100 subclasses. As long as Class

3 is properly tested, NOC shows good indication that Class 1

needs less testing. However, in this case NOC is not quite

correct in the case to suggest low level reuse of Class1.

Class1 is reused by Class2, Class3 and Class4, as well as all

their subclasses, including 100 subclasses of Class3.

 !

The 7th International Conference for Informatics and Information Technology (CIIT 2010)

D. Li and Henry Metrics

Figure 7 Li and Henry Metric Set

Li and Henry’s framework has three sets of metrics. The

first group is consisted of CK metrics; the second group

contains message-passing coupling and method counting, data

abstraction coupling and number of methods; while the third

group includes Size 1 and Size 2 metrics.

Shot description of the other metrics besides CK suite is

given below:

MPC (Message – Passing Complexity) –number of send

statements defined in a class. This is the number of procedure

calls originating from a method in the class and going to other

classes.

DAC (Data Abstraction Coupling) –number of abstract data

types defined in a class. OO introduces abstract data types

such as instance variables along with the use of their inherited

data types. All the relationship usually known as aggregation

relationships are also counted with this metric.

NOM (Number of Methods) –number of local methods in a

class.

Size 1 –number of semicolons in a class. It can be considered

as a sort of LOC for C-style programming languages.

Size 2 –number of locally defined attributes and methods for a

class.

MPC deals with cohesion aspects measuring indirectly the

amount of classes needed by the class under examination. It is

also related to maintenance aspects, since the change in one

of the target classes can influence its behavior. DAC

measures aggregation and encapsulation of data in the class.

NOM is related to class complexity by counting its

functionalities. Size 1 can be considered as modified version

of LOC, while Size 2 adds the local attributes to the NOM

measure, taking into account the class state by its attributes.

E. Lorenz and Kidd object-oriented Metrics

Lorenz and Kidd introduced eleven metrics. Their metrics

are applicable to class diagram and are focused on size,

inheritance, internal and external measurements. These

metrics can be further classified into four categories.

Figure 8 Lorenz and Kidd Metric Suite

Class size metrics – size metrics for the object oriented class.

They count attributes and operations for an individual class.

NPM (Number of public methods) counts the number of

public methods in a class. It is used as estimation of the

amount of work needed to development a class.

NM (Number of methods) counts total number of methods

including public, private and protected methods. Indicate

classes that have too much functionality.

 NPV (Number of public variables per class) counts the

number of public variables in a class. If one class has more

public variables than another, might imply that the class has

more relationships with other objects and is likely to be a key

class.

NV (Number of variables per class) counts total number of

variables including public, private and protected variables.

NCV (Number of class variables) counts the total number of

class variables.

NCM (Number of class methods) counts total number of class

methods.

Class inheritance metrics – inheritance based metrics. They

are focused on the method in which operations are reused

through the class hierarchy.

NMI (Number of methods inherited) measures the number of

methods inherited by a subclass.

NMO (Number of methods overridden) Large number of

overridden methods indicates design problem. It is suggested

that a subclass should be specialization of its super classes,

resulting in unique names and operations .

NNA (Number of new methods) Counts newly added methods.

A method is defined as added in a subclass if there is no

method of the same name in any of its super classes.

Class internal metrics – internal metrics are focused on

cohesion and code oriented issue.

 !"

The 7th International Conference for Informatics and Information Technology (CIIT 2010)

APM (Average parameters per method) is the total number of

parameters in a class divided by the total number of methods.

According to Lorenz and Kidd, value for this metric should

not exceed 0.7

SIX (Specialization index) is calculated as (NMO*DIT)/NM

and measures to what extend the subclasses redefine the

behavior of their super classes

Class external metrics – observe coupling and reuse.

F. MOOD

MOOD (Metrics for Object-Oriented Design) suite was

proposed by Fernando Brito e Abreu and Rogerio

Capurca and is empirically validated. Newer versions are

known as MOOD2 and MOODKIT. In 2003 appeared formal

method for representing MOOD2 metrics using OCL (Object

Constraint Language).

Figure 9 MOOD Metric suite

Original MOOD metric suite consisted of 6 metrics with

values ranging from 0 to 1. This model refers to a basic

structural mechanism of the object-oriented paradigm, such as

encapsulation (MHF, AHF), inheritance (MIF, AIF),

polymorphism (POF), and message passing (COF) [6].

MOOD metrics are calculated for two main features:

methods and attributes. Methods are used to perform

operations. Attributes are used to represent the status of each

object in the system. Each feature (method or attribute) is

either visible or hidden from a given class.

Encapsulation - Method Hiding Factor and Attribute Hiding

Factor were proposed as measure of encapsulation. They

represent the average amount of hiding between all classes in

the system.

MHF (Method Hiding Factor) of a class diagram represents

the percentage of invisibilities of methods. MHF is the sum of

the invisibilities of all methods defined in all classes. The

invisibility of a method is the percentage of the total class

from which the method is hidden. MHF is computed by

dividing the number of all visible methods in all classes by

the number of all methods in all classes. The number of

visible methods is a measure of class functionality. High

MHF values means there are a lot of private methods which

indicates very little functionality and insufficient abstraction.

Low MHF values means that many of the methods are public

indicating they are not properly protected.

AHF (Attribute Hiding Factor) represents the percentage of

attribute invisibilities. AHF is the sum of the invisibility of all

attributes defined in all classes. The invisibility of an attribute

is the percentage of the total classes from which the attribute

is hidden. It is calculated by dividing the number of visible

attributes by the number of all attributes in the diagram. High

AHF values mean that many of the attributes are private and

low AHF values mean that most of the attributes are public.

Inheritance – inherited features in a class are those which are

not overridden in that class. Method Inheritance Factor (MIF)

and Attribute Inheritance Factor (AIF) are proposed to

measure inheritance. High values for these metrics indicates

either unnecessary inheritance of too wide member scopes.

Low values indicate lack of inheritance.

MIF (Method Inheritance factor) represents the percentage of

effective inheritance of methods. MIF is the sum of inherited

methods in all classes of the system. MIF is calculated by

dividing the number of all inherited methods in all classes by

the sum of all methods available of all classes. The degree to

which the class architecture of an object oriented system

makes use of inheritance for both methods and attributes.

Very low MIF values mean that the class lack inheritance or

there are no methods pointing to lazy classes “bed smell”.

AIF (Attribute Inheritance Factor) is the percentage of

effective inheritance of attributes. AIF is the sum of inherited

attributes in all classes of the system. It is calculate by

dividing the number of all inherited attributes in all classes by

the sum of all attributes available of all classes. AIF provides

an indication of the impact of inheritance in the object

oriented software. Very low AIF values indicate lack of

inheritance or that the class has no attributes.

Polymorphism – is an important characteristic of an object

oriented paradigm. Polymorphism measures the degree of

overriding in the system. We can intuitively expect that

polymorphism can be used as reasonable extent to keep the

code clear, but that excessively polymorphic code may be too

complex to understand.

POF or PF (Polymorphism Factor) represents the actual

number of possible different polymorphic situations with

respect to the maximum number of possible distinct

polymorphic situations. POF is calculated by dividing the

total number of overridden methods in all classes by the result

of multiplying of new methods times the number of

descendants for all classes. If a project have 0 % POF, it

indicates the project that uses no polymorphism, and 100%

POF indicates that all methods are overridden in all derived

classes.

Coupling – shows the relationship between modules. A class

is coupled to another class if it calls methods of another class.

Coupled systems are complex, non-maintainable and have

reduced potential of reusing. High COF values should be

avoided.

 !"

The 7th International Conference for Informatics and Information Technology (CIIT 2010)

COF (Coupling Factor) represents the percentage of

couplings between classes. It is calculated by dividing the

number of associations between all classes by the number of

classes squared minus the number of classes. It is reasonable

to conclude that as “the COF value” increases, the complexity

of object oriented design will also increase, and as a result the

understandability, maintainability and the potential for reuse

may suffer. 0% COF indicates that classes are no coupled,

and 100% indicates that all classes are coupled with all other

classes. COF is supposed to have low values, and increasing

COF values should be taken seriously. COF is similar to CBO

because they both use the coupling factor. The main

difference is that in COF all variables access are counted

whereas CBO metric does not count variables.

CLF (Clustering Factor) represents the percentage of actual

number of standalone class hierarchies (clusters) with respect

to the maximum possible number of coupling in the class

clusters. CLF is computed by dividing the number of class

clusters in the by the number of classes in a class diagram.

RF (Reuse Factor) represents the percentage of classes that

are specializations of previously defined classes. The parent

classes may be external to the class diagram, or internal from

super classes. It cannot be calculated solely from the class

diagram because of external libraries that are used.

MOOD 2 metrics – is a latter addition from the author of

MOOD model, that introduces new metrics such as

OHEF/AHEF (Operation/Attribute Hiding Factor that

measures the goodness of scope settings on class operation);

IIF (Internal Inheritance Factor that measures the amount of

internal inheritance in the system); PPF (Parametric

Polymorphism Factor that is the percentage of the classes that

are parameterized – parameterized class is generic class) and

other metrics.

It has been observed that majority of the MOOD Metrics are

fundamentally flawed because they either fail to meet the

MOOD team’s own criteria or are founded on an imprecise or

inaccurate.

G. Misunderstandings in the evaluation on MOOD metric

suite

Encapsulation (MHF / AHF) – the number of private

methods does not tell us anything about the degree of

information hiding in the component. It may tell us that

particular methods have been broken down into smaller

methods to avoid duplication or for clarity of understanding.

In the following example [5] both classes have equal

“information – hiding” levels:

Class A

{

 private int x;

 public int m0()

 {

 do_1;

Class B

{

 private int x;

 public int m0()

 {

 m1();

 do_2;

 do_3;

 return x;

 }

}

 m2();

 m3();

 return x;

 }

 private void m1(){do_1;}

 private void m2(){do_2;}

 private void m3(){do_3;}

}

Figure 10 Example 1 for evaluating MOOD Metric Suite

In class A all of the behavior is contained in the body of A

whereas in class B it has been separated in three smaller

methods. As can be concluded a count of the private methods

is not particularly useful metric, and certainly does not

contribute anything to our knowledge of a component’s

encapsulation level.

Inheritance (MIF / AIF)

Considering the following hierarchical structure:

Figure 11 Example 2 for evaluating MOOD Metric Suite

B and C inherit the two methods defined in A and have no

further methods. This is the maximum possible method

inheritance in the system and intuitively is seams the MIF

should be 100%, but in fact is 66%:

Mi(A)=0 Mi(B)=2 Mi(C)=2

Ma(A)=2 Ma(B)=2 Ma(C)=2

Mi – inherited methods

Ma – available methods

If component C in the above example had a new method

added it should not change the MIF value, as it is consistent

with our intuitive understanding of method inheritance. With

calculation we found that MIF has changed since Ma(C)=3,

so MIF=4/7=57%.

Polymorphism (POF) – Systems often extend frameworks.

When measuring such a system it should be only the

components that belong to the system to be measured and the

ones outside the boundaries should not be considered. In such

 !"

The 7th International Conference for Informatics and Information Technology (CIIT 2010)

cases the denominator for POF may be less than the

numerator, resulting in value greater than 1, which is contrary

that the fact that POF values range from 0 to 1 (0% to 100%).

Such situation can be shown with the following example:

Figure 12 Example for evaluating MOOD Metric Suite

P – overrides 1 method, adds 2 new methods

Q – overrides 2 methods, adds 2 new methods

R – overrides 2 methods, adds 2 new methods

Mo(P)=1 Mo(Q)=2 Mo(R)=2

(Mn(P)=2 * DC(P)=2)=4

(Mn(Q)=2 * DC(Q)=0)=0

(Mn(R)=2 * DC(R)=0)=0

Mo – overridden methods

Mn – new methods

DC- descendants

Therefore, POF for the system is (1+2+2) / (4+0+0) = 5/4 > 1.

These can a typical situation in languages that are shipped

with large component libraries.

Coupling (COF) – There are two types of relationships:

inheritance and when one component uses the other

component as instance variable (client supplier relationship).

There are situations where mixture of both types can be

found. As an example we can take Component and Container

in java.awt library. Component is the super component of all

graphical components and Container is one of its

subcomponents. Thus the two are in inheritance relationship.

However, each component also uses an attribute of the other

component type. The question that the MOOD team does not

adequately answer is whether a client supplier relationship

under these conditions is counted. There is no “correct” way

of dealing with these situations in term of the COF metric.

H. QMOOD

Figure 13 QMOOD Metric Suite

QMOOD (Quality Model for Object-Oriented Design) is a

comprehensive quality model that establishes a clearly

defined and empirically validated model to assess object-

oriented design quality attributes such as understandability

and reusability, and relates them through mathematical

formulas, with structural object-oriented design properties

such as encapsulation and coupling [6]. The QMOOD model

consists of six equations that establish relationship between

object-oriented design quality attributes (reusability,

flexibility, understandability, functionality, extendibility and

effectiveness) and eleven properties. For example reusability

is function of the coupling measure, cohesion measure,

messaging measure and the design size.

ANA (Average Number of Ancestors) – is the average value of

DIT measure for all classes in the system. It is connected with

the inheritance as OO attribute.

CAM (Cohesion among Methods) – is measure of cohesion.

This is based on similarity of method signatures in a class.

 !"

The 7th International Conference for Informatics and Information Technology (CIIT 2010)

CIS (Class Inheritance size) – counts the public methods in a

class. This metric is connected with coupling as OO attribute.

DAM (Data Access Metric) – is the ratio of private and

protected attributes to the total number of attributes declared

in a class. Refers to information hiding as OO attribute.

DCC (Direct class coupling) – counts the classes that accept

instances of a given class a parameter plus classes including

attributes of given class type. Refers to coupling as OO

attribute.

MOA (Measure of aggregation) – the percentage of data

declaration in the system whose types are of user defined

classes, as opposed to those of system defined classes such as

integers, real numbers etc. It is connected to class OO

attribute.

MFA (Measure of functional abstraction) – analogue to MIF

metric defined in the MOOD suite. Connected to information

hiding as OO attribute.

NOM (Number of Methods) – counts the methods in a class. It

is the same as WMC when methods counted are considered

with equal unity.

In the literature there are other proposed metric suits and

metrics.

Chen proposed: (Class Coupling Metric), OXM (Operating

complexity Metric), OACM (Operating Argument

Complexity Metric), ACM (Attribute Complexity Metric),

OCM (Operating Coupling Metric), CM (Cohesion Metric),

CHM (Class Hierarchy of Method) and RM (Reuse Metric).

Metric 1 to 3 is subjective in nature; metrics 4 to 7 involves

count of features and 8 are Boolean. To validate these metrics

the authors conduct an experiment involving 6 “experts”

whose subjective class scores are regressed against the eight

metrics.

Thomas and Jacobson Class Complexity (1989) – deals with

aspects related to local attributes and methods and is a

weighted sum of all local and inherited methods and

attributes. On this basis, different metrics for measuring size

of complexity of the class can be created.

Henderson-Sellers Class Complexity (1991) – is an extension

of Thomas and Jacobson and adds a component related to the

inherited methods. It can also generate several other different

metrics.

There is no individual research of which of these metrics is

significant in prediction.

V. NOTES ON QUALITY MODELS

The work of Chidamber and Kemerer has been the basis in

defining and validating quality models. Lorenz and Kidd

metrics are criticized for not being a part of quality model,

however they have the advantages of being well defined, easy

to collect and could be computed in the early phases. MOOD

model is very well defined, through mathematical formulas

and OCL statements, empirically validated, and provides

thresholds that could be used for judgments. QMOOD has

similar properties as MOOD but distinguishes itself by

providing mathematical formulas that links design quality

attributes with design metrics.

The impact of quality models has been widely used and

empirically validated. Different and sometime opposite

results has been introduced in the literature. Among them are

the following:

Demeyer and Ducasse tested the object-oriented metrics and

their impact when frameworks are developed [15]. They

found that size and inheritance metrics (gathered from

multiple sets) are not reliable in framework development

environment. Although, these metrics were found as

important when they provide results between different

versions and in this situation they can be considered as

stability indication. Bruntink and Deursen used the object-

oriented metrics for creating a model for system testability

[18]. They used the metric set defined by Binder which is

based on the C.K. metric suite. The conclusion was that there

is an important connection between class level metrics and

testability metrics (variations of LOC and NOTC – Number

of test cases). The research is complete and gives detailed

situations how specific metrics affect the testability of a

system.

VI. CONCLUSION

The concerns about metrics and quality suites is because there

is large number of proposed measures, many of them are

similar; there is large number of external attributes of interest;

lack of reliable and complete data sets; it is still difficulty in

integrating quality prediction models in realistic decision

processes. Despite the difficulties, there is a huge amount of

reported studies that draw important conclusions about the

usefulness of the metrics.

Although the Object-oriented metrics are newer in the

measurement theory, they have proven as useful predictors of

good system design. Object-oriented metrics have been

grouped to minimal sets to assess quality of the Object-

oriented systems. There are couples of proposed sets, which

have been validated, empirically tested and applied on the real

systems. The common thing about these suits is that they

cover the same basic predictions of fault-proneness, effort,

and basic quality attributes. Implementing the positive side of

prediction and applying the guidelines, the system can

improve its design, lower complexity and become easy to use.

REFERENCES

[1] Linda M. Laird, M. Carol Brennan (2006) Software Measurement and

Estimation: A Practical Approach

 !"

The 7th International Conference for Informatics and Information Technology (CIIT 2010)

[2] Stephen H. Kan (2002) - Metrics and Models in Software Quality

Engineering, Second Edition

[3] Christof Ebert, Reiner Dumke, Manfred Bundschuh, Andreas

Schmietendorf (2004) – Best Practices in Software Mesurement

[4] Khaled El Emam – A Primer on Object-Oriented Measurement

[5] Abreu - Metric Suite Evaluation

http://www.comp.nus.edu.sg/~bimlesh/oometrics/Findings/Comments%20on

%20metrics.pdf

[6] Mohamed El-Wakil, Ali El-Batawisi, Mokhtar Boshra, Ali Fahmy –

Object-Oriented Design Quality Models: A Survey and Comparison

http://homepages.wmich.edu/~m5elwakil/INFOS04_ElWakil.pdf

[7] Fernando Brito e Abreu, Walcélio Melo - Evaluating the Impact of

Object-Oriented Design on Software Quality

[8] Mark Schroeder – A Practical Guide to Object-Oriented Metrics

http://www.cin.ufpe.br/~inspector/relacionados/metricsbymark.pdf

[9] Muktamyee Sarker - An overview of Object Oriented Design Metrics

http://www.cs.umu.se/education/examina/Rapporter/MuktamyeSarker.pdf

[10] Seyyed Mohsen Jamali - Object Oriented Metrics

http://ce.sharif.edu/~m_jamali/resources/ObjectOrientedMetrics.pdf

[11] Linda H. Rosenberg - Applying and Interpreting Object Oriented

Metrics http://www.literateprogramming.com/ooapply.pdf

[12] Victor R. Basili, Lionel Briand, Walcélio L. Melo – A Validation of

Object-Oriented Design Metrics as Quality Indicators

http://www.cs.umd.edu/~basili/publications/journals/J62.pdf

[13] Wei Li, Sallie Henry – Object-Oriented Metrics Which Predict

Maintainability http://eprints.cs.vt.edu/archive/00000347/01/TR-93-05.pdf

[14] Cem Kaner, Walter P. Bond - What Do They Measure and How Do We

Know? http://www.kaner.com/pdfs/metrics2004.pdf

[15] Serge Demeyer, Stephane Ducasse - Metrics, Do They Really Help?

http://scg.unibe.ch/archive/papers/Deme99aDemeyerDucasseLMO99.pdf

[16] Shyam R. Chidamber, David P. Darcy, and Chris F. Kemerer -

Managerial Use of Metrics for Object-Oriented Software: An Exploratory

Analysis

http://www.pitt.edu/~ckemerer/CK%20research%20papers/ManagerialUseM

etrics_ShidamberDarcyKemerer98.pdf

[17] S Kanmani, V Sankaranarayanan, P Thambidurai - Evaluation of Object

Oriented Metrics http://www.ieindia.org/pdf/86/pcn5fl4.pdf

[18] Magiel Bruntink, Arie van Deursen - Predicting Class Testability using

Object-Oriented Metrics

http://www.st.ewi.tudelft.nl/~arie/papers/testability/scam04.pdf

 !"

