An upper asymptotic bound of the mean square worst-case error of the integration in the weighted Sobolev space by using "tent transformation"

Vesna	Vassil	Vladimir Balaz	Oto Strauch	Stanislava Stoilova
Dimitrievska	Grozdanov			
Ristovska				
Institute of	SWU Neophit	Institute of Information	Mathematical	University of Civil
informatics,	Rilsky, FNSM	Engineering, Automation and	Institute, Slovak	Engineering,
UKIM		Mathematics, Faculty of	Academy of	Architecture and
		Chemical and Food Technology,	Sciences	Geodesy
		Slovak Technical University		
Skopje,	Blagoevgrad,	Bratislava, Slovakia	Bratislava, Slovakia	Sofia, Bulgaria
Macedonia	Bulgaria			

ABSTRACT

In this paper we consider the mean square worst-case error of the integration in the weighted Sobolev space introduced by Hickernell.

We approximate the integrals of integrands from this space through quasi-Monte Carlo algorithm with equal quadrature weights. It is obtained an exact formula for the mean square worst-case error of the integration in the space as a Fourier-Walsh series.

It is introduced a new transformation of the points of nets in $[0,1]^s$ the so-called a tent transformation in base b, where b is an arbitrary even number.

We obtain an upper bound of the mean square-worst case error of the integration in this space, by using first points of (s,b)-digitally shifted and second folded by the tent transformation in base b, an arbitrary (t,m,s)-net. This permits us to give the asymptotic behaviour of this error.

I. PRELIMINARY NOTATIONS AND STATEMENTS

Let $s \ge 1$ be a fixed integer and $\xi = (x_i)_{i \ge 0}$ be an arbitrary sequence of points in $[0,1)^s$. For each integer $N \ge 1$ and an arbitrary subinterval J of $[0,1)^s$ with a volume $\mu(J)$, we denote by $A(\xi,J,N)$ the number of the points x_n of the sequence ξ whose indices n satisfy the inequalities $0 \le n \le N-1$ and belong to the interval J. The sequence ξ is called **uniformly distributed** in $[0,1)^s$ if the equality

$$\lim_{N \to \infty} \frac{A(\xi, J, N)}{N} = \mu(J)$$

holds for every subinterval J of $[0,1)^s$.

The **diaphony** is a quantitative measure for uniform distribution of sequences in $[0,1)^s$. Zinterhof [15] uses the trigonometric functional system τ to introduce the "classical" diaphony

$$\tau = \{e_{\mathbf{m}}(\mathbf{x}) = \exp(2\pi \mathbf{I}(\mathbf{m}, \mathbf{x})) : \mathbf{m} = (m_1, m_2, ..., m_s) \in \mathbf{Z}^s,$$

 $\mathbf{x} = (x_1, x_2, ..., x_s) \epsilon[0, 1)^s$, where (\mathbf{m}, \mathbf{x}) is the inner product between the vectors \mathbf{m} and \mathbf{x} .

Weyl criterion:

The sequence $\xi = (x_i)_{i \ge 0}$ of points in $[0,1)^s$ is uniformly distributed if and only if the limit equality

$$\frac{1}{N} \lim_{N \to \infty} \sum_{n=0}^{N-1} e_m(x_n) = 0$$

holds for each integer vector $\mathbf{m} \neq \mathbf{0}$.

For a non-negative integer $k \ge 0$ and real $x \in [0,1)$ with the *b*-adic representations

$$k = \sum_{i=0}^{\nu} k_i b^i$$
 and $x = \sum_{i=0}^{\infty} x_i b^{-i-1}$,

where for $0 \le i \le v$, $k_i \in \{0,1,...,b-1\}$, $k_i \ne 0$, the k-th function of Walsh in base $b_b wal_k(x):[0,1) \to \mathbb{C}$ is defined in the following way

$$_{b}wal_{k}(x) = \prod_{i=0}^{b} \exp(2\pi I \frac{k_{i}x_{i}}{b}).$$

Let N_0 be the set of non-negative integers, for an arbitrary vector $\mathbf{k} = (k_1, ..., k_s) \in N_0^s$ and $\mathbf{x} = (x_1, ..., x_s) \in [0, 1)^s$ we define the multivariate Walsh function by multiplication of the corresponding univariate functions, i.e.

$$_{b}wal_{k}(\mathbf{x}) = \prod_{j=1}^{s} {}_{b}wal_{k_{j}}(x_{j}).$$

The set $W(b) = \{ b \text{ wal } k(\mathbf{x}) : k=0, 1,...; x \in [0,1) \}$ is called the Walsh functional system in base b.

Weyl criterion:

The sequence $\xi = (x_i)_{i \ge 0}$ of points in $[0,1)^s$ is uniformly distributed if and only if the limit equality

$$\frac{1}{N} \lim_{N \to \infty} \sum_{n=0}^{N-1} {}_{b} wal_{k}(x_{n}) = 0$$

holds for each integer vector $k \in N_0^s$ and $k \neq 0$.

Grozdanov [12] in 2007 introduced the so-called **weighted b**-adic diaphony. So, let $\alpha > 1$ be an arbitrary real and γ be an arbitrary vector of positive weights $\gamma = (\gamma_1, ..., \gamma_s)$ where $\gamma_1 \ge \gamma_2 \ge ... \ge \gamma_s > 0$. For each integer $N \ge 1$ the **weighted b**-adic diaphony $F_N(W(b), \alpha, \gamma, \xi)$ of the first N elements of the sequence $\xi = (x_i)_{i \ge 0}$ of points in $[0,1)^s$ is defined as

$$\begin{aligned} F_{N}(W(b), \alpha, \gamma, \xi) &= \\ &= \sqrt{\frac{1}{C(b, \alpha, \gamma) - 1}} \sum_{k \in \mathbb{N}^{s}} r_{b}(\alpha, \gamma, k) \left| \frac{1}{N} \sum_{n=0}^{N-1} {}_{b} wal_{k}(\mathbf{x}_{n}) \right|^{2}, \end{aligned}$$

where for a vector $\mathbf{k} = (k_1, ..., k_s) \in N_0^s$, $\mathbf{r}_b(\alpha, \gamma, k) = \prod_{j=1}^s \mathbf{r}_b(\alpha, \gamma_j, k_j)$, and for each integer $k \ge 0$ the coefficient $\mathbf{r}_b(\alpha, \gamma_j, k_j)$ is defined by:

$$r_b(\alpha, \gamma; k) = \begin{cases} 1; if \ k = 0 \\ \gamma b^{-\alpha g}; for \ \forall k, b^g \le k < b^{g+1}, g \in \mathbb{N}_0 \end{cases}$$

where $C(b, \alpha, \gamma) = \prod_{i=1}^{s} [1 + \gamma_i \mu_b(\alpha)]$ and

$$\mu_b(\alpha) = \frac{(b-1)b^{\alpha}}{b^{\alpha} - b}.$$

Theorem 1:

The sequence $\xi = (x_i)_{i \ge 0}$ of points in $[0,1)^s$ is uniformly distributed if and only if the equality

$$\lim_{N\to\infty} F_N(W(b),\alpha,\gamma,\xi) = 0,$$

for each real α >1 and for each vector of positive weights γ holds.

II. MULTIVARIATE INTEGRATION IN WEIGHTED HILBERT SPACES

Following Aronszajn [8], we will recall the concept of reproducing kernels for Hilbert spaces.

So, let $H_s(K)$ be a Hilbert space with a reproducing kernel $K:[0,1]^{2s} \rightarrow \mathbf{R}$ and a norm $\left\| \cdot \right\|_{H_s(K)}$.

The multivariate integral

$$I_s(f) = \int_{[0,1]^s} f(x) dx, f \in H_s(K)$$

is approximated by quasi-Monte Carlo algorithm with equal quadrature weights

$$Q_s(f; P_N) = \frac{1}{N} \sum_{n=0}^{N-1} f(x_n),$$

where $P_N = \{x_0, x_1...,x_{N-I}\}\$ is a deterministic sample point net composed of $N \ge 1$ points in $[0,1)^s$.

The worst-case error of the integration in the space $H_s(K)$ is defined as

$$e(H_s(K); P_N) = \sup_{f \in H_s(K), ||f||_{H_s(K) \le 1}} |I_s(f) - Q_s(f; P_N)|.$$

For arbitrary reals $x,y \in [0,1)^s$ with representations

$$x = \sum_{i=0}^{\infty} x_i b^{-i-1}$$

and

$$y = \sum_{i=0}^{\infty} y_i b^{-i-1}$$

where for infinitely many indices i, x_i , $y_i \neq b-1$, let us set

$$x \bigoplus_{i=0}^{b} y = \sum_{i=0}^{\infty} [x_i + y_i \pmod{b}]b^{-i-1}.$$

For arbitrary vectors $\mathbf{x} = (x_1, x_2, ..., x_s)$ and $\mathbf{y} = (y_1, y_2, ..., y_s) \epsilon [0, 1)^s$ let us define $\mathbf{x} \oplus_s^b \mathbf{y} = (x_1 \oplus_1^b y_1, ..., g_s \oplus_1^b y_s)$.

Let

$$P_N = \{x_0, x_1..., x_{N-1}\}$$

be an arbitrary net in $[0,1)^s$. For an arbitrary vector $\sigma \epsilon [0,1)^s$ we define the so-called **(s,b)-digitally shifted net** $P_N((s,b);\sigma)$ by

$$P_{N}((s,b);\sigma) = \{x_{0} \bigoplus_{s}^{b} \sigma, x_{1} \bigoplus_{s}^{b} \sigma, ..., x_{N-1} \bigoplus_{s}^{b} \sigma\}.$$

Following Dick and Pillichshammer [5] we recall the definition for mean square worst-case error of the integration in Hilbert spaces. Let $H_s(K)$ be an arbitrary Hilbert space generated by the kernel K. Let P_N be an arbitrary net composed of N points in $[0,1)^s$. We define the notion of a

mean square worst-case error $\hat{e}_{(s,b)-ds}(H_s(K);P_{N})$

of the integration in the space $H_s(K)$ by using a random (s,b)-digitally shifted net P_N by the equality

$$\hat{e}_{(s,b)-ds}(H_s(K);P_N) =$$

$$\left(\int_{0.11^s} e^2(H_s(K);P_N((s,b);\sigma))d\sigma\right)^{\frac{1}{2}}.$$

III. MULTIVARIATE INTEGRATION IN THE WEIGHTED SOBOLEV SPACE

In our work we will realize an investigation of the mean square worst-case error of the integration in the space H_{Sob,s,γ,β_4} of functions which partial derivatives up to order two have to be square integrable. This space have been introduced by Hickernell [1].

Let B_k denotes the *k*-th Bernoulli polynomial, i. e. $B_0(x)=1$, $B_1(x)=x-1/2$, $B_2(x)=x^2-x+1/6$ and $B_4(x)=x^4-2x^3+x^2-1/30$. Let us denote $\beta_4 = \{B_0, B_1, B_2, B_4\}$.

Hickernell [1] has defined the Sobolev space

$$H_{Sob,s,\gamma,\beta_A} = \{h: ||h|| < \infty \}.$$

The reproducing kernel of the space $H_{Sob.s.\gamma,\beta_4}$ is given by

$$K_{s,\gamma}(x,y) = \prod_{j=1}^{s} K_{\gamma_j}(x_j, y_j),$$

 $\mathbf{x}=(x_1,x_2,...,x_s)$ and $\mathbf{y}=(y_1,y_2,...,y_s) \in [0,1)^s$, where for reals x, y in [0,1) and a weight $\gamma > 0$ the one-dimensional reproducing kernel $K_{\gamma}(x,y)$ is defined as

$$K_{\gamma}(x,y)=$$

$$B_0(x)B_0(y) + \gamma B_1(x)B_1(y) + \gamma^2/4B_2(x)B_2(y) - \gamma^2/24B_4(|x-y|)$$

Theorem 2:

The mean square worst-case error of the integration in the weighted Sobolev space by H_{Sob,s,γ,β_4} using a random (s,b)-digitally shifted $P_N = \{x_0, x_1, \dots, x_{N-I}\}$ is given by the equality $\hat{e}^2(s,b) - ds(H_{Sob,s,\gamma,\beta_4}; P_N) =$

$$-1 + \frac{1}{N^2} \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} \sum_{k=0}^{N-1} \hat{K}_{W(b),s,\gamma}(k,k)_b wal_k(x_n)_b wal_k(x_h),$$

where for an arbitrary vector of weights $\gamma = (\gamma_1, ..., \gamma_s)$ and a

vector $\mathbf{k} \in \mathbb{N}_0^s$ the coefficients $\hat{K}_{W(b),s,\gamma}(k,k)$ are exactly obtained.

Let $b \ge 2$, $s \ge 1$ and $0 \le t \le m$ be integers. A point set *P* consisting of b^m points in $[0,1)^s$ forms a **(t,m,s)-net in base** *b* if every subinterval J

$$J = \prod_{j=1}^{s} \left[\frac{a_j}{b^{d_j}}, \frac{a_j + 1}{b^{d_j}} \right)$$

of $[0,1)^s$ with integers $d_j \ge 0$ and $0 \le a_j \le b^{d_j}$ for $1 \le j \le s$ and of volume b^{t-m} contains exactly b^t points of the net P.

IV. TENT TRANSFORMATION

Let $b \ge 2$ be a given **even** integer. We will define the function:

$$\Phi(x) = \begin{cases} bx - 2\alpha, & \text{if } x \in \left[\frac{2\alpha}{b}, \frac{2\alpha+1}{b}\right], \\ \alpha = 0, 1, \dots, \frac{b-2}{2} \\ 2 + 2\alpha - bx, & \text{if } x \in \left[\frac{2\alpha+1}{b}, \frac{2\alpha+2}{b}\right], \\ \alpha = 0, 1, \dots, \frac{b-2}{2} \end{cases}$$

which we will call a tent transformation in base *b*. For a vector $\mathbf{x} = (x_1, x_2, ..., x_s) \in [0, 1)^s$ we set:

$$\Phi(\mathbf{x}) = (\Phi(x_1), \Phi(x_2), ..., \Phi(x_s)).$$

To the points of the net $P_N((s,b);\sigma)$ we apply the tent transformation and obtain the net

$$P_N((s,b);\Phi;\sigma) = \{\Phi(x_0) \bigoplus_{s=0}^b \sigma, \Phi(x_1) \bigoplus_{s=0}^b \sigma, ..., \Phi(x_{N-1}) \bigoplus_{s=0}^b \sigma\}.$$

Theorem 3:

Let $K \epsilon L_2([0,1)^{2s})$ be an arbitrary reproducing kernel.

The mean square worst-case error $\hat{e}_{(s,b)-ds}(H_s(K); P_N)$ of the integration in the space $H_s(K)$ by using first (s,b)-digitally shifted and second folded by the tent transformation net P_N satisfies the equality

$$\hat{e}_{(s,b)-ds;\Phi}(H_s(K);P_N) = e(H_s(K_{(s,b)-ds;\Phi});P_N),$$
 where

$$e(H_s(K_{(s,b)-ds;\Phi}); P_N)$$

is the worst-case error of the integration in the Hilbert space, generated by the associated (s,b)-digitally shifted and folded kernel $K_{(s,b)-ds;\Phi}$.

Theorem 4 (an upper bound):

Let ${}^{1}\!/_{\!\!4}<\!\lambda \leq 1$ be a given real number. There exists a digital (t,m,s)-net P_{b^m} over $\mathbf{Z}_{\!\!b}$, such that the mean square worst-case error of the integration in the space H_{Sob,s,γ,β_4} by using first (s,b)-digitally shifted and second folded by the tent transformation in base b net P_{b^m} satisfies the upper bound

$$\begin{split} \hat{e}^{2\lambda}{}_{(s,b)-ds,\Phi}(H_{Sob,s,\gamma,\beta_4};P_{b^m}) \leq \\ -1 + \prod_{j=1}^s [1 + c_1(b,\lambda,\gamma_j) \frac{1}{b^{4\lambda m}}] + \\ \frac{1}{b^m} \prod_{j=1}^s [1 + c_2(b,\lambda,\gamma_j) + c_3(b,\lambda,\gamma_j) \frac{b^m}{b^{4\lambda m}} + \\ + c_4(b,\lambda,\gamma_j) \frac{1}{b^{4\lambda m}}], \end{split}$$

where the $c_i(b, \lambda, \gamma_j)$, $1 \le i \le 4$, $1 \le j \le s$ are exactly defined constants

Theorem 5 (an asymptotic behaviour):

The mean square worst-case error of the integration in the space H_{Sob,s,γ,β_4} by using first (s,b)-digitally shifted and second folded by the tent transformation in base b net $P_{\iota,m}$ satisfies

$$\hat{e}_{(s,b)-ds,\Phi}(H_{Sob,s,\gamma,\beta_4}; P_{b^m}) = O(b^{-2m})$$

V. REFERENCES

- [1] F. J. Hickernell "Obtaining O(N^(-2+ε)) Convergence for lattice Quadrature Rules", In: Fang, K. T., Hickernell, F. J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 274-289, Springer, Berlin Heidelberg New York, 2002.
- [2] G. Larcher, H. Niederreiter, W.Ch. Schmid "Digital nets and sequences constructed over finite rings and their applications to quasi-Monte Carlo integration", Monatsh. Math., vol.121, no. 3, pp.231-253, 1996.
- [3] G. Larcher and G. Pirsic, "Base change problems for generalized Walsh series and multivariate numerical integration", *Pacific J. Math.*, vol.189, no.1, pp. 75-105, 1999.
- [4] H. E. Chrestenson "A class of generalized Walsh functions", Pacific J. Math, vol.5, pp. 17-31, 1955.
- [5] J. Dick, F. Pillichshammer, "Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces", J. Complexity, vol. 21, pp. 149-195, 2005.
- [6] J. L. Walsh "A closed of normal orthogonal functions", Amer J. Math, vol.45, pp.5-24, 1923.
- [7] L. Cristea, J. Dick, G. Leobacher, F. Pillichshammer "The tent transformation can improve the convergence rate of quasi-Monte Carlo algorithms using digital nets", *Numer. Math.* vol. 105 pp. 413-455, 2007
- [8] N. Aronszajn "Theory of reproducing kernels", Trans. Amer. Math. Soc. Vol.68, pp.337-404, 1950.
- [9] V. Grozdanov and S. Stoilova, "On the theory of the b-adic diaphony", C. R. Acad. Bul. Sci., vol.54, no.3, pp. 31–34, Sophia, 2001.
- [10] V. Ristovska, "Irregularity of the distribution of the generalized Van der Corput sequence", C.R.Acad. Bul. Sci., vol.58, no.5, pp. 487–492, 2005.
- [11] V.Ristovska, "Quantitative measures for uniform distribution of sequences", PMF, Skopje, 2007 (master thesis).
- [12] V.S. Grozdanov, "The weighted b-adic diaphony", Journal of Complexity, vol. 22, 490-513, 2006.
- [13] V. Grozdanov, E. Nikolova, S. Stoilova, "Generalized b-adic diaphony", C. R. Acad. Bul. Sci., vol.56, no. 4, pp. 23–30, Sophia, 2003.
- [14] P. Zinterhof "Uber einige Abschatzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden", S. B. Akad. Wiss., math.naturw. Klase, Abt.II, vol.185, pp.121-132, 1976.