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ABSTRACT

In this paper we consider the mean square worst-case error of
the integration in the weighted Sobolev space introduced by
Hickernell.

We approximate the integrals of integrands from this
space through quasi-Monte Carlo algorithm with equal
quadrature weights. It is obtained an exact formula for the
mean square worst-case error of the integration in the space as
a Fourier-Walsh series.

It is introduced a new transformation of the points of nets in
[0,17° the so-called a tent transformation in base b, where b is
an arbitrary even number.

We obtain an upper bound of the mean square-worst case
error of the integration in this space, by using first points of
(s,b)-digitally shifted and second folded by the tent
transformation in base b, an arbitrary (t,m,s)-net. This
permits us to give the asymptotic behaviour of this error.

I.  PRELIMINARY NOTATIONS AND STATEMENTS

Let s>1 be a fixed integer and &é=(x;)p be an arbitrary
sequence of points in [0,1)°. For each integer N>1 and an
arbitrary subinterval J of [0,1)* with a volume u(J), we denote
by A(£J,N) the number of the points x, of the sequence &
whose indices # satisfy the inequalities 0<n<N-1 and belong
to the interval J. The sequence ¢ is called uniformly
distributed in [0,1)" if the equality

[im 222
N—o N
holds for every subinterval J of [0,1)°.

u(J)

The diaphony is a quantitative measure for uniform
distribution of sequences in [0,1)°. Zinterhof [15] uses the
trigonometric functional system T to introduce the "classical"
diaphony

={en(X)=exp(2nl(m,X)):m=(m;,my,...,m)eZ’,

X=(X1,X2,...,X,)€[0,1)°}, where (m,x) is the inner product
between the vectors m and x.

Weyl criterion:
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The sequence &=(x;)p of points in [0,1)° is uniformly
distributed if and only if the limit equality

1 . N-1
—limX_e.(x,)=0
N N> =0

holds for each integer vector m#0.
For a non-negative integer £>0 and real x€[0,1) with the b-
adic representations

k= Zj:okibi and x = Zj:()xibiiil ,

where for O<i<v, kie{0,1,...,b-1}, k,#0, the k-th function of
Walsh in base b ,wal, (x):[0,1)>C is defined in the

following way
v kx,
ywal, (x) = [ [ exp2d T) .
i=0

Let IV, be the set of non-negative integers, for an arbitrary
vector k=(kj,...,k)eNy" and x=(xy,...,x,)e[0,1)° we define the
multivariate Walsh function by multiplication of the
corresponding univariate functions, i.e.

pwaly(x)= H b Walkj (xj) .

j=l

The set W(b)={ , wal, (x):k=0, 1,... ; x€[0,1)} is called the
Walsh functional system in base b.

Weyl criterion:

The sequence &=(x;) of points in [0,1)° is uniformly
distributed if and only if the limit equality

1 . N-1
—hmz ywal (x,)=0
N N> p=0

holds for each integer vector keN," and k#0.

Grozdanov [12] in 2007 introduced the so-called weighted b-
adic diaphony. So, let @>1 be an arbitrary real and y be an
arbitrary vector of positive weights »=(»,..., ») where
yi=y=...=y.>0. For each integer N>1 the weighted b-adic
diaphony Fy(W(b),a,y,)of the first N elements of the
sequence £=(x;)s of points in [0,1)" is defined as
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Ey(W(b),a,y,¢) =

2

s

N-1
%z ywal, (x)

n=o

C(b,nlz,;/)—l Z r(a,y,k)

keNOJ k#0

where for a vector k=(k,,....k)e Ny, 1,(@ yk)=ITii1p(@ 1. k;),
and for each integer k>0 the coefficient ry(; . k;) is defined
by:

Lif k=0
ry (e, ysk) = {

™% for Vk,b® Sk<bg”,geN0

where C(b,e P)=IT[1+5u(a)] and
@ (b-1)b"
)=——.
A b _b

Theorem 1:
The sequence &=(x;)p of points in [0,1)* is uniformly
distributed if and only if the equality

Iim Fy W (b),a.7.£) =0,

N>

for each real a>1 and for each vector of positive weights y
holds.

II. MULTIVARIATE INTEGRATION IN WEIGHTED HILBERT
SPACES

Following Aronszajn [8], we will recall the concept of
reproducing kernels for Hilbert spaces.
So, let H(K) be a Hilbert space with a reproducing kernel K

:[0,11*>R and a norm”-"H‘(K) .

The multivariate integral

L(f)= [y, ferK)
[o.11°
is approximated by quasi-Monte Carlo algorithm with equal
quadrature weights

Qs(f;PN)ﬁgf(xn),

where Py={xq, x|...,xy;} is a deterministic sample point net
composed of N=1 points in [0,1)°.

The worst-case error of the integration in the space Hy(K) is
defined as

e(H (K);Py) =

sup  |[1(NH-0O.(f;R)-

JeH, (K)’H/ HH,‘.(K)Q

For arbitrary reals x,ye[0,1)° with representations

I aic —i-1
X = Zi:O xib

y= Zioyib_i_l

where for infinitely many indices i, x;, y; # b-1, let us set

x @f y= Zio[xi +Vi (mOdb)]b_i_l-

and

For arbitrary vectors x=(X1,Xa,...,Xs) and y=(y1,ya,...,ys)€ [0,1)°
let us define x@i’y= (x) ('ny], -2 @fys).
Let
PN:{X(), X1 ...,.X'N_]}

be an arbitrary net in [0,1)°. For an arbitrary vector ce[0,1)°
we define the so-called (s,b)-digitally shifted net Py((s,b);o)
by

Px((s,b);0) ={xo @_f o, X (‘B? G, ..., XN/ (‘Bf G}.
Following Dick and Pillichshammer [S] we recall the
definition for mean square worst-case error of the integration
in Hilbert spaces. Let Hy(K) be an arbitrary Hilbert space
generated by the kernel K. Let Py be an arbitrary net
composed of N points in [0,1)°. We define the notion of a

mean square worst-case error &, , (H (K);Py)

of the integration in the space Hy(K) by using a random (s,b)-
digitally shifted net Py by the equality

é(s,b)—ds (H (K);Py)=
(-[0,1]“ e’ (H (K): Py ((s,b); o‘))doﬁ .

III. MULTIVARIATE INTEGRATION IN THE WEIGHTED SOBOLEV
SPACE

In our work we will realize an investigation of the mean
square worst-case error of the integration in the space
H Sob.s.y. B4 of functions which partial derivatives up to order

two have to be square integrable. This space have been
introduced by Hickernell [1].

Let B, denotes the k-th Bernoulli polynomial, i. e. By(x)=1,
Bi(x)=x—1/2, By(x)=x’-x+1/6 and B4(x)= x*-2x*+x*-1/30.

Let us denote 8, ={B,B;,B,,B,}.

Hickernell [1] has defined the Sobolev space

H = {h: ||h||<cc}.

Sob,s.y.f4

The reproducing kernel of the space H Sobus.y.fy is given by

Ks’y(x’y): HSj:l K}// (x/ ? y/) ’
X=(X1,X2,...,Xs) and y= (y1,ya,...,ys) €[0,1)°, where for reals x, y

in [0,1) and a weight )>0 the one-dimensional reproducing
kernel K,(x, y) is defined as

K)’(X’Y):

By(x)Bu(y)+1B1(X)B1(y)+1"/4By(x)Ba(y)-"/24B4(x-y)
Theorem 2:
The mean square worst-case error of the integration in the
weighted Sobolev space by HSDb,S%/),A using a random (s,b)-
digitally shifted Px={xo, x;...,xy.;} is given by the equality
52 . —
€ (s,b)-ds (HSob,s,y,ﬂ47 PN) -

N-IN-1

—1+ #ZZ ZI%W(b),s,V (k,k),wal, (x,),wal (x,),

n=0 h=0 feN,"
where for an arbitrary vector of weights »=(»,,..., ») and a
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vector keN,' the coefficients Ky, (k,k) are exactly

obtained.

Let b=2, s>=1 and O<t<m be integers. A point set P
consisting of 4" points in [0,1)° forms a (t,m,s)-net in base b
if every subinterval J

s | a

J=H ; ,aj+1

d d;
= b7 b

of [0,1)° with integers dj=0 and O=a;< bd’ for 1<j<s and of
volume b™" contains exactly ' points of the net P.

IV. TENT TRANSFORMATION

Let b>2 be a given even integer. We will define the function:

bx =2a, if x e[3,24t),

a=0]1,..,5%
2420 —bx, if x e[, 24:2)
a=0,1,..,52
which we will call a tent transformation in base b.
For a vector X=(X,Xa,...,X,)€[0,1)* we set:
D(x) = (P(x,), P(x,),.... D(x,)).

To the points of the net Py((s,b);o) we apply the tent
transformation and obtain the net

Py((5.):2;0)={P(x0) @) 6.0(x) D) G, .. Bxx.t) D) 5.

Theorem 3:
Let KeL,([0,1)*) be an arbitrary reproducing kernel.

O(x) =

The mean square worst-case error €, . (H (K); Py ) of

the integration in the space Hy(K) by using first (s,b)-digitally
shifted and second folded by the tent transformation net Py
satisfies the equality

é(s,b)—ds;CI) (H(K);Py)= e(Hs(K(_v,b)—ds;CI) ) Py),
where
e(Hs(K(x,b)—dv;CD ) Py)

is the worst-case error of the integration in the Hilbert space,
generated by the associated (s,b)-digitally shifted and folded
kernel K
Theorem 4 (an upper bound):

Let Y4<A<l be a given real number. There exists a digital

(t,m,s)-net Ph

(s,b)—ds; D *

over 7y, such that the mean square worst-case

error of the integration in the space H Sob.s,y. B4 by using first
(s,b)-digitally shifted and second folded by the tent
transformation in base b net Pb’” satisfies the upper bound

82

A24 )
e smaso(Hgy 53 P,) =<

s 1
_1+H[1+cl(b,l,7,-)b4ﬁ]+

J=1

I Mveear)reear) 2+
b L b
1
+C4(b,/1,7/‘,»)b4m],

where the ¢, (b, A, }/j) , 1=i=4, 1<j<s are exactly defined
constants.

Theorem 5 (an asymptotic behaviour):
The mean square worst-case error of the integration in the

space H Sob,s,y. s by using first (s,b)-digitally shifted and
second folded by the tent transformation in base b net
P, satisfies

[
~ ) B 5
e(s»b)*dS,CD (]—[Sob,s,y,ﬁ4 7f)bm ) = O(b m)
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