
The 9th Conference for Informatics and Information Technology (CIIT 2012)

©2012 Faculty of Computer Science and Engineering

SOCIAL BOOKMARKING OVER NOSQL. WE NEED SPEED.

Ljupco Jovanoski Vladimir Apostolski Dimitar Trajanov

Faculty of Computer

Science and Engineering

Faculty of Computer

Science and Engineering

Faculty of Computer

Science and Engineering

Skopje, Macedonia Skopje, Macedonia Skopje, Macedonia

ABSTRACT

Becoming the backbone of some of the web’s biggest social

networks, and few others systems holding a large amount of

data, the NoSql concept stands its ground as the only

alternative to storing data beside the SQL approach. Big web

companies like Google, Amazon and Facebook developed

non-relational databases that sacrifice consistency for

availability, scalability and performance. We have developed

a social bookmarking service based on NoSql concept,

looking for performance, since expecting a large amount of

data in our hands. A system providing its users with an easy

way to organize, tag and share web content of interest.

Additionally, generating recommendations and groups of

similar web content, based on interests shown while using the

bookmarking service. In this paper we concentrate on

building a solid ground for performance comparison of two

web applications, providing the same social bookmarking

service, using a different concept to store its data. The

expectations are that the NoSql based service will provide us

with better performance that the SQL supported service. We

concentrate on the potential performance benefit, as well as

the possibility to gain additional advantage by being able to

scale our data storage on multiple servers.

I. INTRODUCTION

When it comes to social networks, its users always cared

about speed, and it was never any different since the trend

started. The choice of transferring the social aspect of life on

one of the many social network has been made, so it seems

that this huge responsibility has been delegated to the service

provider, to take care of its user’s needs, mainly recognized as

performance and accurate data, as well as availability at any

given time. Not only social networks will be covered over the

content of this paper, since the main goal is to observe web

systems that handle huge amount of data. For a long time,

nobody was ambitious enough to ask what needed to be asked

long time ago – is there an alternative to the SQL approach?

Over time, SQL walked its obstacle-free way, gaining more

and more thrust with every SQL-based relational database

management system being developed. Today, SQL stands tall,

still being the first and obvious choice when it comes to

system development in need of data storage. But today brings

a new challenge, removing the rug underneath SQL’s feet,

forcing it’s “soon to be ex” clients to search for the long

forgotten need of an alternative in order to handle the

humongous amount of data:

• one billion searches on Google per day [1]

• 60 million statuses updated every day (not counting

photos upload, likes and other types of interaction available

on Facebook) [2]

• 175 million tweets per day [3]

So, this being the statistics nowadays, handling this amount of

data is impossible with SQL, if the provider’s main concern is

performance. Gaining a high degree of horizontal scalability

is another issue that SQL does not respond very well to [4].

The question came up in 2004 and who else but Google to be

the first one to ask and answer it. “BigTable is a distributed

storage system for managing structured data that is designed

to scale to a very large size: petabytes of data across

thousands of commodity servers” – so they said when they

decided to come out to the world in 2006, full-feature paper,

describing the surface of BigTable, keeping most of the fun

part to themselves, as well as the code [5]. Amazon basically

did the same thing with their Amazon DynamoDB

implementation of the NoSql concept, with the difference of

making profit of it by offering it as a service. “DynamoDB

will automatically spread the data and traffic over a suitable

number of servers using solid state drives, allowing

predictable performance”[6] [7]. Facebook was lunched at

2004, but since they did not think big at first, it was not a

concern for them at the time. Since September 26, 2006 and

the opening of the Facebook service to everyone above the

age of thirteen, the drastic growth of their social network,

forced them to think about alternative approaches to their

MySQL foundation [8]. They came up with Cassandra, which

represents a structured key-value store with tunable

consistency, which is a big step up from “eventual

consistency”, since now a choice is offered between data

being “eventually consistent” or “strongly consistent”. So,

Facebook having a role model and someone to look up to,

developed Cassandra and used it for their Inbox Search

feature. Not long after that, they released it as an open source

project on Google Code. Since February 2010 Apache

adopted Cassandra as a top level project and today Cassandra

enjoys a healthy community around it [9].

A trend has developed, so the concept was out there for

everyone else to embrace it, and many social networks did

this, taking advantage of the ability to scale their data storage

over multiple nodes, thus gaining performance over a large

data set. However, everyone that took the step towards the

alternative, had to sacrifice few things from both developer’s

and client’s perspective. The development aspect suffered a

loss of rich query language, the relations between entities,

thus a new DB structure is needed to represent entities,

compromising data consistency and causing data redundancy.

Despite these disadvantages of the newly born NoSql

concept, it seems that it found its place when it comes to data

storage. The NoSql movement showed its strength back in

2009 and since then is growing rapidly in terms of

implementations and community. Looking few years back,

we can see that the most respectable social networks out there

The 9th Conference for Informatics and Information Technology (CIIT 2012)

decided to take this big step towards the alternative to SQL

[10] [11]. Thus, after developing our social bookmarking

service powered by SQL Server 2008, we dedicated some

time to research, to determine if there is a better way to store

big amount of data.

Our intention is to roughly estimate the potential of NoSql,

powering our social bookmarking service and every other

service provided by the system we developed. The initial

assumption is that we will gain performance, as well as the

ability to scale horizontally.

II. THE IDEA –BIRTH, MEANING, DEVELOPMENT

The definition of our system covered an easy to use

bookmarking service and a few other features that interfere

with the concept of social networks, like sharing content,

forming open groups of interest, generating suggestions based

on user interests and following users with similar interests.

We tended to achieve high degree of personalization by

determining user’s interests by the actions he takes while

using our service. Conducting our research about the

competition on the web, we came upon few web sites that

introduced us with features we wanted to see in our system,

being under the impression our users would benefit from

them. However, despite the things we found “missing”, we

tended to look for something the competition was missing,

led by the idea “let the information find you, not the other

way around”. We then decided that the information in our

system needs to hold more meaning and value than plain text,

in order to find some kind of connection with the interest

shown by the users of our bookmarking service. Thus, we

turned towards a semantic approach, which we incorporated

with the help of an external knowledge source exposed as a

web service – the OpenCalais Web Service. We use the

OpenCalais Web service to retrieve semantic keywords over a

given web content being marked [12]. We consider this to be

the right way to offer more precise web content to our users.

From this point on, two research directions developed: how to

present the user with the information he needs (semantic data

annotation), and how to do the same faster (consider SQL

alternative). This paper will cover the later, presenting the

process of SQL to NoSql migration and the research which

provides the final answer regarding the obtained benefits, and

the lost benefits as well. Attempts of comparison between the

two concepts in terms of performance were made, since the

NoSql movement started, showing great performance

improvement [13] [14].

III. DATABASE SWITCH

Adopting the alternative of the relational data storage

systems, in order to gain advantage in terms of scalability,

availability and performance, we lost something that comes in

handy during development [15]. Relations between entities,

the rich query language including join, order by, group by

statements, as well as the ability to define a firm policy over

the entire data storage in order to gain data consistency and

remove any possibility of data redundancy [16]. What the

migration forced us to do, to overcome the NoSql approach

disadvantages was the following:

• Redesign DB structure

• Hold the entire entity as one record, instead of breaking it

in multiple tables like in SQL

• Overcome lack of rich query language by generating

additional collections holding statistics

• Multiple collections hold same information

• Partially resolve data consistency issues at application

level

• Make peace with being “eventually consistent”

Observing the bookmark segment of the SQL

implementation, we can see that a single bookmark record is

spread across five different tables holding the basic

information about the web content being marked, the

semantically annotated tags relevant to the same, along with

their relevance bound to the web content and the user of the

bookmarking service (Fig. 1). Having the ability to define

relations between tables, and the powerful query language in

perspective, these five tables are enough to cover the stream

of latest bookmarks made by using our bookmarking service,

stream of bookmarks made by the user himself, as well as

retrieving global trends and generating recommendations

dependent on single user interests.

Figure 1: Database diagram showing tables relevant to the

bookmarking process, relations between them and data they

hold.

Multiple attempts to translate the SQL DB model to NoSql

DB model were made. However, because of MongoDB’s

flexibility in terms of change of entity definition, we spent

zero time on data migration during minimal document

corrections [17]. We switched the SQL tables with

collections, every SQL row is represented as one BSON

document, containing key value pairs, representing strongly

typed domain model entities. The final approach we came up

with was to have all basic bookmark information in one entity

– document, along with the tags related to the web content

and short information regarding the users that have marked

4

The 9th Conference for Informatics and Information Technology (CIIT 2012)

the same web content (Fig. 2). The tag collection within every

bookmark document holds minimal but sufficient

information, covering the tag name as well as the tag meaning

and the relevance in regard to the web content being marked.

This collection covers the stream of latest bookmarks and the

ability to produce the statistics for the most popular posts on

global level. However, it does not have the potential to cover

stream of user bookmarks, and to determine the user interests,

thus we cannot rely on it to recommend content of interest to

each user. To overcome this issue, an additional collection

was created (UserBookmarks), in order to provide the system

with the ability to produce the stream of single user

bookmarks, as well as the possibility to retrieve his interest

based on his bookmarking history, generating a list of

bookmarks made by other users, which might be of interest to

him.

Figure 2: Database diagram showing tables relevant to the

bookmarking process, relations between them and data they

hold.

The downside we face here is the data duplication leading to

failure in the redundancy aspect, as well as disruption of data

consistency. However, this risks and disadvantages did not

come to perspective at this stage of the NoSql

implementation, since they were expected and accepted

during the initial research for migration to alternative data

storage.

When it comes to the base user information, not much has

changed in the model. However, the analysis showed that

every User document can hold information about the user’s

actions, in terms of bookmark activity, as well as activities

connected to group creation and participation. Thus, an

additional two properties were added to the User model,

holding the number of individual user posts and number of

groups in which the user participates, enabling a fast way to

generate global trends within our application. The groups of

interests are organized on database level identically as the

bookmarks, having an additional collection holding the

comments of the group’s users. The social aspect of the

service, represented as following users sharing same interests,

resulted in an additional UserFriends collection in the

database model, holding information about user’s relations

with other users of the social bookmarking service. A single

Message collection is also added to the database model to

represent users interaction implemented as a simple message

sharing system. Despite being present in both bookmark and

group models, the statistics for keyword representation and

trend are available through the Tags collection, created

especially to have an easy and precise way to cover the

application’s trend, and determine the target group.

Additionally, it provides a fast search through the closed set

of tags covered by the application, enabling tag suggestions to

the users, while marking and organizing web content.

IV. SYSTEM ARCHITECTURE

The system is realized as a web application with a non-

relational database system at the backend. What used to be a

Microsoft SQL Server 2008 instance was replaced with a

NoSql implementation MongoDb. MongoDB, a cross-

platform NoSQL database, is the fastest-growing new

database in the world. MongoDB provides a rich document-

oriented structure with dynamic queries that you’ll recognize

from RDBMS offerings such as MySQL [18]. Before

replacing our SQL implementation with NoSql

implementation, we conducted a research that ended with

MongoDB imposing as the primary candidate for data

storage. MongoDB has developed a healthy community in the

past couple of years. Additionally, the agility that it provides

during the development process, built-in scalability, indexing,

JSON-like documents and cross-platform nature, made the

decision easy [19]. The multiple MongoDB drivers for .NET

just went along with the choice. We used “Samus MongoDB -

CSharp” to connect to the document – oriented database. The

frontend is implemented as ASP.NET MVC 3 web

application (Fig. 3), updated from the previous web solution

being built as ASP.NET 3.5 Web application. This is another

step forward, towards new technologies and enhanced

patterns for software development, since being up to date is

just another way to present system quality.

Figure 3: Frontend of the Semmarks application. On the left is

the list of latest bookmarks.The right side the

recommendations regarding people, bookmarks and groups.

The top holds the navigation menu, as well as the search

interface and the user’s information.

The frontend provides the user with a list of the latest

bookmarks, web content marked by other people, as well as

his own posts. Alongside, are the recommendations of people

sharing same interests, and groups and bookmarks related to

those interest.

The 9th Conference for Informatics and Information Technology (CIIT 2012)

The easy to use bookmarking process is possible through the

browser bookmarklet (Fig. 4), a small piece of JavaScript

embedded into any browser, which allows the user to

bookmark the current page loaded into the browser.

Figure 4: Application Architecture: components of the engine

for storing bookmarks. Client interaction remains the same,

the change reflected on server side, by changing the data

storage provider from SQL to MongoDB.

The advantage the bookmarklet holds over browser

extensions lies in its cross-browser compatibility and

consequently, there is no need to develop multiple versions

for each browser.

After the user initiates the bookmarking process, the URL that

the browser’s address bar holds is sent to OpenCalais by an

asynchronous call, resulting in JSON response, containing the

recognized keywords within the web content, along with their

meaning and relevance score. The tags are displayed to the

user, at which point he can provide tags on his own to

complete the bookmarking by saving, causing a single

bookmark entity to be sent back to the server, and be written

in the database as a single BSON document in the Bookmarks

collection. This document holding single web content

reference contains its base information like URL, title and

metadata contained in the resource’s HTML head section.

Probably the most important data contained in this JSON-like

document, is the list of tags, representing entities found

within the web content, along with their relevance to the

content in question, as well as their meaning, information

describing the keyword, its origin, its meaning in the context,

bringing even more knowledge to the system, enabling for a

precise content suggestion. The most valuable keywords are

the ones retrieved from the OpenCalais web service,

semantically annotated entities holding information about the

number of occurrences within the given article and relative

importance. We combine these two segments to determine if

the keyword is relevant enough to be included in our data

storage. This way we prevent database flooding with

irrelevant tags. Providing information about the information is

a huge step forward from the traditional keyword-analyzing

techniques, empowering us with a more precise way to

determine user interests, thus achieving high level of

personalization by delivering the right information to the user.

An additional update to a specific User document is made

corresponding the logged in user information, incrementing

the value of the properties that hold the numbers of the user’s

activities. Additionally, a new record is added to the

UserBookmark collection, making it possible for the post to

appear in the stream of user bookmarks. Having in

consideration that the keywords attached to the web content

are of crucial meaning to defining a closed set of user

interests, a Tags collection for the same is being updated with

every bookmarking activity, and every group creation. The

Tags collection contains every keyword, regardless of its

source: manual user input or OpenCalais service response.

This is a consequence of the non-relational nature of the

entire NoSql concept, regardless of the implementation,

forcing us to duplicate data among multiple collections in the

database, as well as implementing minor statistics helpers in

order to overcome the loss of group by, order by and join

statements.

V. TESTING PROCESS

Our team set up the environment to perform the test, not

taking sides in the SQL versus NoSql competition. We

managed to disabled the caching on the SQL instance, to rely

on SQL itself for performance. Because of our expectance to

get the most activity from our bookmarking service, we

decided to profile over the page displaying the stream of latest

bookmarks. We also decided to relieve both SQL and

MongoDB from additional processes using it, in order to see

their response over a single query at any given moment. Thus,

we removed every single additional request on the page we

are profiling (logged in user info, bookmark, group and user

suggestions), leaving only the stream of latest bookmarks to

be profiled. Finally, we had the same conditions applied to

both systems, expecting that we will come in possession of

data showing the proportion between SQL Server 2008 and

MongoDB performance. Hopefully, the results collected from

the tests in development environment apply in production

environment as well. A stored procedure is used by SQL to

retrieve the stream of latest bookmarks, implementing

standard paging, sorting the bookmarks by date of creation

and a return parameter holding the number of records

satisfying the given criteria. MongoDB implements the same

logic, using the C# MongoDB driver at data layer. We are

measuring the precise time from the moment the connection

to the database is established, the data retrieval, to the

moment the connection to the database is closed. The

profiling is being conducted by initiating 30 different requests

to each system, by changing the page parameter sent to the

server as a part of the request. Pages requested over which the

profiling will be executed are shown in the following

intervals: [1-10], [50-59], [90-99]. Regarding the content that

is being inserted in the databases, it’s different in both cases

due to the significant change in the data model while

migrating from SQL to MongoDB. However, the same

amount of content is provided to both SQL Server 2008 and

MongoDB and it covers the basic bookmark parameters like

web page title, web page URL, the description and the

keywords retrieved from the meta tags of the web page, list of

10 keywords related to the web content and a list of 10 users

which already bookmarked the web page. In MongoDB, all

this data is represented as a single document in the Bookmark

collection. In SQL Server 2008, the data being inserted is

separated in the tables shown in Fig. 1, where the Bookmarks

6

The 9th Conference for Informatics and Information Technology (CIIT 2012)

table holds the title, URL, description and keywords of the

web page, while the users and tags retrieved from the web

content are located in Users_Bookmarks table and

Bookmarks_Tags.

A. Testing Environment

Using a simple profiling tool available at Google Code [20],

installed over both web applications through the NuGet, a

Visual studio extension, making it easy to install third-party

libraries [21]. The hardware configuration consists of Dell

Latitude E6520, with i5-2410M CPU @ 2.3 GHz, 8 GB

RAM, Windows 7 Ultimate operating system. Both web

applications hosted on local machine on IIS 7.5, under the

same application pool with .NET Framework v.4.0.30319.

The focus is on SQL Server 2008 instance and the MongoDB

instance, running as a Windows Service on port 27017 [22].

VI. RESULTS

Four scenarios were presented by our team, expecting that the

given conditions will cover every aspect of the research. The

attempt is to profile the stream of latest bookmarks on both

SQL and MongoDB based web applications. For this purpose,

a console application was developed to make the dummy data

insert, using it at four different stages to provide half million,

a million, three million and five million records in both SQL

Server 2008 and MongoDB instances. The initial idea for the

scenarios was to find common grounds at the first stage and

work our way up to a point where the proportion between

performances will prove out initial thesis right or wrong.

A. Results at Half Million Records

It seems that at this point of the research, we found a common

ground for both instances, showing similar execution times.

SQL Server 2008 presented an average of 32.5 milliseconds

per page request and MongoDB presented slightly lower

results with the average of 19.76 milliseconds per page

request (Fig. 5). Despite the fact that the NoSql

implementation presents a little advantage in performance, the

loss of convenient relations between entities and the ease of

querying, is not supported by this minor benefit in

performance.

0

5

10

15

20

25

30

35

40

1 3 5 7 9 50 52 54 56 58 90 92 94 96 98

T
im

e
 f

o
r

d
a

ta
 r

e
tr

ie
v

a
l

(m
s)

Page requested

Profiling at half million records

MongoDB profiling

SQL Server 2008 profiling

Figure 5: The performance test results at half million records

in both SQL Server 2008 and MongoDB. SQL handles itself

quite good at this stage of the research, as expected. However,

MongoDB instance shows slightly better performance.

B. Results at One Million Records

At this point of the research, it seems like a tendency has

developed, going along with our initial thesis. The results at

one million records show 27.723 milliseconds needed for a

request to be served by the MongoDB instance, against 82.16

milliseconds for a request served by SQL Server 2008 (Fig.

6). Compared to the previous profiling session at half million

records, SQL made a significant jump in performance, while

MongoDB went slightly up on the time scale.

0

20

40

60

80

100

120

140

160

1 3 5 7 9 50 52 54 56 58 90 92 94 96 98

T
im

e
 f

o
r

d
a

ta
 r

e
tr

ie
v

a
l

(m
s)

Page requested

Profiling at one million records

MongoDB profiling

SQL Server 2008

profiling

Figure 6: Chart showing the test results at one million

records. SQL raises its response time.

C. Results at Three Million Records

The trend continues. After inserting three million records in

both SQL Server 2008 and MongoDB, the profiling resulted

in an average of 25.77 milliseconds per page request on

MongoDB’s side and a high raise to 370.53 milliseconds per

page request on SQL’s side (Fig. 7). A definite advantage in

performance is noticeable right about now, and a final blow to

the SQL instance will be given at five million bookmark

records.

0

100

200

300

400

500

1 3 5 7 9 50 52 54 56 58 90 92 94 96 98

T
im

e
 f

o
r

d
a

ta
 r

e
tr

ie
v

a
l

(m
s)

Page requested

Profiling at three million records

MongoDB profiling

SQL Server 2008

profiling

Figure 7: Chart showing the test results at three million

records. SQL drastically rising, while MongoDB remains at

impressive 25.7 milliseconds.

D. Results at Five Million Records

At this point of the research, we got the results that will fully

support our initial thesis, the gain of performance by

switching to the alternative of the long trusted relational

database management systems – the “Not Only SQL”

concept. A massive difference it performance supported by

the comparison of the profiling results at five million records:

The 9th Conference for Informatics and Information Technology (CIIT 2012)

33.296 milliseconds per request for MongoDB against 570.01

milliseconds per request for SQL Server 2008.

0

100

200

300

400

500

600

700

800

1 3 5 7 9 50 52 54 56 58 90 92 94 96 98

T
im

e
 f

o
r

d
a

ta
 r

e
tr

ie
v

a
l

(m
s)

Page requested

Profiling at five million records

MongoDB profiling

SQL Server 2008

profiling

Figure 8: Chart showing the test results at five million

records. MongoDB shows the necessity of an alternative to

the relational database approach.

VII. CONCLUSION

Based on the presented results, our team came to the

conclusion that advantage can definitely be taken from

MongoDB or any other NoSql implementation for that matter.

When it comes to a social bookmarking service, which

extends its appetites towards social network features, as well

as semantic annotation of web content, performance for the

users and an easy way to scale the data storage from

developer’s point of view, is the way to go. Main factor that

contributed to this decision was the noticeable difference in

performance over five million records. Additionally, the real

power of NoSql is his ability to scale out easily across

multiple servers, a feature that comes as a contradiction to the

relation aspect of the relational database management

systems. However, both development and customer sacrifices

are inevitable due to absence of relations between entities and

depletion of the rich query language that SQL offers. SQL

still remains as the obvious and logical choice in systems that

required data storage and handle relatively small amount of

data. However, with the trend that has developed in recent

years, the migration of the social aspect of life on the web, it

seems that SQL no longer has the entire market for itself.

NoSql becomes even more appealing with the fact that it

remains open-source and the tendency to develop a healthy

community over every implementation of the concept. Having

the policy of the social networks in consideration, eventual

data consistency, non-relational nature and abandoning the set

of extremely useful SQL statements, seems like a fair trade

for higher degree of availability, performance and scalability.

In future, a possibility remains to improve the database

structure, and scale the data over multiple nodes, taking full

advantage of NoSql. Our team latest interests are related to a

different NoSql database types, analyzing their benefits over

MongoDB, so a different NoSql implementation is also a

possibility, opening a new window of opportunities for

research and improvement.

REFERENCES

[1] Google Searches per Day. August 2011

[2] Anson Alexander. "Facebook User Statistics 2012 [Infographic]".

February 2012

[3] Shea Bennett. "Just How Big Is Twitter In 2012? [Infographic]”.

February 2012

[4] Rick Cattell. "Scalable SQL and NoSQL data stores". December

2010.

[5] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,

Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew

Fikes, Robert E. Gruber. "Bigtable: A Distributed Storage System

for Structured Data". OSDI 2006

[6] Vogels, Werner (2012-01-18). "Amazon DynamoDB – a Fast and

Scalable NoSQL Database Service Designed for Internet Scale

Applications". January 2012.

[7] Carolyn Abram. "Welcome to Facebook, everyone". September

2006.

[8] Clark, Jack. "Amazon switches on DynamoDB cloud database

service". ZDNet. 2012.

[9] The Apache Cassandra Project . 2009.

[10] "Looking to the future with Cassandra | Digg About". September

2009.

[11] "Cassandra @ Twitter: An Interview with Ryan King". February

2010

[12] Open Calais: How Does Calais Work? . 2008.

[13] Michael Kennedy. "The NoSQL Movement, LINQ, and MongoDB

- Oh My!”. April 2009

[14] Michael Kennedy. "MongoDB vs. SQL Server 2008 Performance

Showdown". April 2009

[15] Kai Orend. "Analysis and Classification of NoSQL Databases and

Evaluation of their Ability to Replace an Object-relational

Persistence Layer". April 2010

[16] Rick Cattell. "Will NoSQL Databases Live Up to Their Promise?".

February 2010.

[17] Kristina Chodorow, Mike Dirolf. "MongoDB: The Definitive

Guide". September 2010

[18] Eelco Plugge, Tim Hawkins, Peter Membrey. "The Definitive

Guide to MongoDB: The NoSQL Database for Cloud and Desktop

Computing". 2010

[19] Christof Strauc. "NoSQL Databases". February 2011

[20] A simple but effective mini-profiler for ASP.NET and WCF -

Google Project Hosting . 2010.

[21] Nuget: Visual Studio extension that makes it easy to install third-

party libraries. 2010.

[22] Windows Service – MongoDB. 2009.

8

